
 

Învăţarea reţelelor neuronale pe bază de exemple 
 
 

Conf. dr. Călin Enăchescu, Universitatea Petru Maior Târgu-Mureş 

 
 
The supervised learning process of a neural network, or the approximation of a smooth 

function using a set of examples, called training set, is ill-posed. Usually the training set doesn’t 
contain enough information, therefore the condition of uniqueness is not satisfied. In order to 
transform the ill-posed problem of approximating a function from sparse examples into a well-
posed problem, we need to take into consideration some a priori hypothesis about the function to be 
approximated. What is the weakest a priori hypothesis that can be considered without affecting the 
general frame of function approximation? The learning process (function approximation) is efficient 
if we obtain good generalization properties. But the generalization properties are a result of a 
certain level of redundancy, more precisely we can say that generalization properties are a result of 
the property that small changes of the input parameters results in small changes of the output 
parameters. But this property is named smoothness. Concluding, we can say that the learning 
process of a neural network is equivalent to the approximation of a smooth function from examples 
(the training set). 
 

 

 Cea mai semnificativă proprietate a reţelelor neuronale este capacitatea de a învăţa din 
mediul înconjurător şi de a-şi îmbunătăţi performanţele pe baza acestui proces de învăţare. Reţeaua 
neuronală învaţă pe baza unui proces iterativ de ajustare a tăriilor sinaptice şi eventual al nivelului 
de activare. Dacă procesul de învăţare decurge bine, atunci reţeaua neuronală acumulează tot mai 
multe informaţii, la fiecare iteraţie. 
 Evident că atunci când folosim termenul de "proces de învăţare" ne situăm într-o 
terminologie mult prea largă, care este dependentă de mai mulţi factori. Pentru aceasta vom defini, 
în contextul calculului neuronal, "învăţarea" conform cu [4], în felul următor: 

Def.1: Învăţarea este un proces prin care parametrii reţelei neuronale sunt adaptaţi 
permanent prin intermediul unor stimuli proveniţi de la mediul înconjurător căruia îi 
aparţine reţeaua neuronală. Tipul de învăţare este determinat de forma de modificare a 
parametrilor reţelei neuronale. 

  Definiţia de mai sus conţine următoarea secvenţă de evenimente[2]: 
• Evenimentul 1: Reţeaua neuronală primeşte stimuli de la mediul înconjurător; 
• Evenimentul 2: Reţeaua neuronală se modifică ca răspuns la stimuli; 
• Evenimentul 3: Ca urmare a acestor modificări permanente, care afectează structura sa internă, 

reţeaua neuronală răspunde de fiecare dată într-un nou mod mediului de la care vin stimuli. 
 Să încercăm să dăm o formulare matematică acestui proces descris mai sus. Pe baza celor 
prezentate mai sus şi în capitolul anterior, am văzut că ceea ce se modifică în cadrul procesului de 
învăţare este tăria sinaptică. De aceea avem formularea matematică cea mai generală a procesului 
de învăţare, exprimat prin formula: 
    ( ) ( ) ( )w t w t w tji ji ji+ = +1 Δ     (1) 

♦ wji(t+1) şi wji(t) reprezintă noua şi vechea valoare a tăriei sinaptice wji care uneşte axonul 
neuronului i de o dendrită a neuronului j.  
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♦ reprezintă ajustarea aplicată tăriei sinaptice w( )Δw tji ji(t), la momentul t, obţinându-se 
valoarea wji(t+1) la momentul t+1, în urma procesului de ajustare.  

 Ecuaţia (1) conţine în mod evident efectele Evenimentelor 1, 2 şi 3 prezentate mai sus. 
Ajustarea este obţinută ca urmare a unor stimuli ai mediului înconjurător (Evenimentul 1), 
iar valoarea modificată a tăriei sinaptice w

( )Δw tji

ji(t+1) defineşte schimbarea din reţeaua neuronală, ca un 
rezultat al stimulilor prezentaţi reţelei neuronale (Evenimentul 2). Din momentul t+1 reţeaua 
neuronală răspunde într-un mod nou mediului înconjurător deoarece tăria sinaptică s-a modificat, 
devenind wji(t+1) (Evenimentul 3). 

Def. 2: Vom numi algoritm de învăţare, un set de reguli predefinite care soluţionează problema 
"învăţării". 

 Un alt factor important relativ la procesul de învăţare este modul de raportare a unei reţele 
neuronale la mediul înconjurător. În acest context putem defini: 

Def. 3: Vom numi paradigmă de învăţare, un model al mediului înconjurător în care are loc 
procesul de învăţare al reţelei neuronale. 
 

Învăţare supervizată 
 
Modificarea tăriilor sinaptice este făcută pe baza comparaţiei dintre vectorul de ieşire 

 obţinut la stratul de ieşire şi vectorul ţintă , ce 
reprezintă rezultatul dorit a se obţine la stratul de ieşire, când la stratul de intrare s-a prezentat 
vectorul de intrare  din mulţimea de antrenament.  

y μ μ μ= ( , , ..., )y y ym1 2
μ

=

z μ μ μ μ μ= =( , , ... , ), , ... ,z z z Pm1 2 1

x μ μ μ μ μ= ( , , ... , ), , ... ,x x x Pn0 1 1
Vectorul ţintă  este furnizat de un profesor (antrenor), de unde şi denumirea de învăţare 

supervizată. Învăţarea supervizată presupune prezentarea de către un antrenor a unor perechi de 
date de forma ( , ce formează o mulţime de date, numită mulţime de 
antrenament: 

zμ

, ), , ... ,x zμ μ μ =1 P

  ( ){T = =x zμ μ μ, ,2,1 K }P,      (2) 
 Diferenţa dintre răspunsul obţinut  y şi răspunsul dorit z, reprezintă eroarea şi este folosită 

pentru a modifica tăriile sinaptice, pe baza unui algoritm specific, numit lege de învăţare.  
 
Natura statistică a procesului de învăţare 
  

Să considerăm un fenomen descris printr-un vector x ∈ Rn ce reprezintă o mulţime de 
variabile independente, şi un scalar real z ∈ R ce reprezintă o variabilă dependentă. Elementele 
vectorului x pot fi considerente ca vând interpretări fizice diferite.  
 Să presupunem de asemenea, că avem o mulţime de N măsurători (observaţii) ale variabilei 
x, şi anume:    

x1, x2, x3, ..., xN     (3) 
şi o mulţime corespunzătoare de scalari z, notată:  

z1, z2, z3, ..., zN     (4) 
 În mod obişnuit, nu posedăm informaţiile necesare despre relaţia exactă dintre variabilele x 
şi z. De aceea vom nota această relaţie astfel: 
     ( )z f= +x ε      (5) 
unde f este o funcţie de variabila x, iar ε este eroarea reprezentată sub forma unei variabile 
aleatoare. Eroarea ε semnifică eroarea pe care o facem în estimarea dependenţei funcţionale dintre 
variabilele x şi z. Ecuaţia (5) de mai sus este un model statistic  [4], numit model regresiv.  

Putem defini funcţia f a modelului regresiv ca fiind: 
     ( ) [ ]f E zx = x      (6) 
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unde E este operatorul de medie statistică. [ ]E z x reprezintă media condiţională, semnificând faptul 
că vom obţine, în medie, valoarea z, dacă avem o realizare particulară a lui x. 
 O reţea neuronală reprezintă de fapt un mecanism fizic pentru a implementa acest obiectiv: 
predicţionarea lui z pe baza lui x. Acest lucru se realizează prin codificarea informaţiei conţinută în 
mulţimea de antrenament ( ){ }T z ii i= =x , ,2, ,1 K N în tăriile sinaptice. Este evidentă interpretarea 
din punct de vedere al calcului neuronal, dată celor două mărimi x şi z: x reprezintă vectorul 
(stimulul) de intrare în reţeaua neuronală, iar z reprezintă valoarea ţintă (dorită) a se obţine la stratul 
de ieşire al reţelei neuronale. 
 Să notăm cu w, vectorul tăriilor sinaptice a reţelei neuronale, care va avea rolul de a 
aproxima modelul regresiv exprimat prin ecuaţia (6). Vom nota cu y valoarea de ieşire generată de 
reţeaua neuronală. Atunci, prin propagarea valorii de intrare x, de la stratul de intrare, către stratul 
de ieşire, unde obţinem valoarea y, putem scrie corespondenţa [3]: 
     ( )y F= x w,      (7) 
 De asemenea, datorită faptului că mulţimea de antrenament, conţine şi vectori ţintă, care 
sunt furnizaţi de un antrenor, este evidentă analogia cu paradigma învăţării supervizate. De aceea, 
modificarea vectorului tăriilor sinaptice se va face printr-un proces iterativ, ca răspuns la semnalul 
eroare: 
     e z y= −      (8) 
 Dacă ar fi să reprezentăm grafic modelul regresiv (6), sub noua sa interpretare dată de 
calculul neuronal, am obţine diagrama de mai jos: 
 
 
 
 
 
 

 
 
 

F(x,w) Σ
 x 

e

z
 y 

Fig. 1: Modelul corespunzător calculului neuronal. 
 

Modificarea vectorului tăriilor sinaptice, se face folosind un algoritm de învăţare de tip 
corecţie a erorii MSE (3) sau (4). Putem atunci scrie [2]: 

  ( ) [ ] ( )[ ] ( )( )[ ]E w x w= = − = −
1
2

1
2

1
2

2 2 2E e E z y E z F ,   (9) 

 Optimizarea reţelei neuronale înseamnă minimizarea funcţiei eroare. Pentru aceasta re 
scriem relaţia (9): 
 

  ( )E w = ( ) ( ) ( )( )[ ]1
2

2E z f f F− + −x x x w,  =

  
( )( )[ ] ( )( ) ( ) ( )( )[ ]

( ) ( )( )[ ] ( )( )[ ] ( ) ( )( )[ ]
= − + − − +

+ − = − + −
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1
2

1
2
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2
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,

, , 2
(10) 

 
 
 
Modelul general al procesului de învăţare 
 

 

501 
 

Provided by Diacronia.ro for IP 216.73.216.159 (2026-01-08 15:58:53 UTC)
BDD-A23844 © 2005 Editura Universităţii „Petru Maior”



 Din studiul statistic al procesului de învăţare am văzut echivalenţa dintre problema 
aproximării unei funcţii descrise cu ajutorul unei mulţimi de antrenament 

( ){ }T ii i= =x z, ,2, ,1 K N cu procesul de învăţare al unei reţele neuronale pe baza aceleaşi mulţimi 

de antrenament ( ){ }Ni i= =x z, ,2, ,1 KT i . De asemenea modelele de aproximare prezentate 
corespundeau paradigmei de învăţare supervizată. Un model de învăţare supervizată are trei 
componente reprezentabile astfel [3]: 
 
 
 

Antrenor Mediul 
înconjurător X 

descris de 
distribuţia P(x) 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2: Modelul învăţării supervizate. 
 

 Cele trei componente sunt: 
• Mediul înconjurător X, care transmite stimulul x ∈ X, generat de o distribuţie probabilistică 
oarecare fixată P(x);  
• Antrenorul,  care furnizează răspunsurile ţintă z, ce se doresc a se obţine la ieşirea reţelei 
neuronale, pentru orice vector de intrare x, în concordanţă cu distribuţia probabilistică fixă ( )P z x . 
Vectorii x şi z sunt legaţi prin relaţie funcţională necunoscută f:     
     ( )z x= f      (11) 
• Reţeaua neuronală F(x,w) - este capabilă să implementeze relaţia funcţională dintre x şi z, 
descrisă prin relaţia:        (12) (y x w= F , )
 Problema învăţării constă în selectarea, pe baza unei mulţimi de antrenament  

( ){T ii i= =x z, ,2, ,1 K }N cunoscută a priori, a funcţiei F(x,w) ce aproximează vectorul ţintă z, 
furnizat de antrenor. Selecţia funcţiei F(x,w) se bazează deci pe cele N elemente ale mulţimii de 
antrenament T, care sunt independent şi identic distribuite. 

Problema învăţării: Problema fundamentală a învăţării supervizate este dacă mulţimea de 
antrenament ( ){T ii i= =x z, ,2, ,1 K }N conţine suficiente informaţii pentru a putea construi o 
funcţie aproximantă F(x,w), deci o reţea neuronală, capabilă să înveţe cât mai bine datele de 
antrenament şi în plus să aibă capacitatea de generalizare. 

  Proprietatea de generalizare reprezintă capabilitatea unei reţele neuronale de a răspunde la 
date de intrare ce nu au făcut parte din mulţimea de antrenament. Este evident faptul că scopul 
învăţării unei reţele neuronale trebuie să fie obţinerea unei bune capacităţi de generalizare. 
Generalizarea poate fi privită, dacă considerăm reţeaua neuronală ca o aplicaţie între spaţiul datelor 
de intrare şi spaţiul datelor de ieşire (obţinute la stratul de ieşire), ca fiind abilitatea de interpolare a 
aplicaţiei respective.  

Reţea 
neuronală: 

w ∈ W 

(Profesor) 
 x1,x2,...,xN

( ){ }T ii i= =x z, ,2, ,1 K N  

 x 
 F(x,w)  ≈ z 
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 Să presupunem că după ce o reţea neuronală a efectuat faza de învăţare, dorim să extragem o 
lege care să definească comportamentul ei. Vom reprezenta schematic modul de extragere a unei 
legi în Fig.3. 
 

Fig.3:Reprezentarea schematică a 
modului de extragere a unei legi.  
 
 
 
 
 
 
 
 
 
  

 
Să explicăm schema din figura de mai sus. X reprezintă spaţiul tuturor datelor de intrare, 

perechi de forma (vectori de intrare, vectori ţintă), date ce sunt consistente cu o anumită lege R. În 
procesul de învăţare o submulţime a legii R, notată T, şi care reprezintă mulţimea de antrenament, 
este folosită pentru a învăţa o reţea neuronală. După ce procesul de învăţare s-a terminat, testăm 
capacitatea de generalizare a reţelei, cu ajutorul unei submulţimi G ⊂ R, disjunctă de T. 

 T  G

R
X

 Putem deci concluziona că performanţele reţelei neuronale, relative la submulţi-mea T ⊂ R, 
reprezintă capacitatea de memorare a reţelei, iar performanţele relative la submulţimea G ⊂ R, 
reprezintă capacitatea de generalizare a reţelei neuronale. De obicei T şi G sunt alese aleator din 
mulţimea R, ambele fiind generate de aceeaşi lege de distribuţie. 

 De fapt, în procesul de învăţare, reţeaua neuronală învaţă doar elementele sub-mulţimii T, 
fără a şti nimic despre G şi R. De aceea este natural ca această reţea neuronală, să fie capabilă de a 
generaliza orice mulţime de date de intrare care este consistentă cu T. Acest lucru este reprezentat 
în Fig.4. 

 

G1

G2

G3T

U

  
 

 
Fig.4. Reprezentarea schematică a 
capacităţii de generalizare a unei 
reţele neuronale.  
 
 
 
 
 
 
 
 
 
 

 
Problema generalizării poate fi îngreunată dacă saturăm procesul de învăţare a reţelei 

neuronale printr-un număr prea mare de date de antrenament. În această situaţie capacitatea de 
generalizare a reţelei neuronale este slabă. Ca un exemplu, în Fig.5., problema generalizării datorită 
supra-saturării procesului de învăţare, privită prin prisma interpolării datelor de antrenament. 
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(a) (b)

 

Fig.5. Reprezentarea schematică a problemei generalizării, unde avem:  
 ο - date de antrenament; • - date pentru generalizare. (a). Învăţare reuşită, generalizare 
 bună. (b). Învăţare saturată, generalizare slabă. 
 
 Aceste elemente referitoare la capacitatea de generalizare a reţelei neuronale, sugerează 
posibilitatea de a cuantifica estimativ capacitatea reţelei neuronale de a generaliza, în funcţie de 
arhitectura sa şi de dimensiunea mulţimii de antrenament. Pentru aceasta, vom selecta din 
numeroasele posibilităţi de cuantificare a generalizării, următoarele: 

• Numărul mediu de posibilităţi de generalizare în raport cu o mulţime de  
antrenament. 
• Probabilitatea ca reţeaua neuronală antrenată să genereze, în medie, răspunsuri 
corecte pentru date de intrare alese aleator din spaţiul datelor de intrare. 
• Probabilitatea ca reţeaua neuronală antrenată să genereze, în medie, răspunsuri 
incorecte pentru date de intrare alese aleator din spaţiul datelor de intrare. 

 
Răspunsul la Problema învăţării poate fi obţinut dacă privim această problemă prin 
prisma teoriei aproximării, adică studiem învăţarea unei reţele neuronale ca o problemă 
de aproximare: să găsim funcţia F(x,w) care aproximează cel mai bine funcţia dorită f(x) 
[1] . 

 
 Să notăm cu d eroarea dintre vectorul ţintă z, ce se doreşte a se obţine pentru vectorul de 
intrare x, şi răspunsul generat de reţeaua neuronală, exprimat prin funcţia aproximantă F(x,w). 
Definită această eroare cu ajutorul distanţei Euclidiene: 
    ( )( ) ( )d F Fz x w z x w; , ,= − 2     (13) 
 Vom defini funcţionala risc [2] ca fiind media erorii definite mai sus: 
    ( ) ( )( ) (R d F dPw z x w x= ∫ ; , , )z    (14) 

 integrala de mai sus este considerată în sens Riemann-Stieljes, iar P(x,z) reprezintă 
distribuţia probabilistică  a vectorului de intrare x şi a vectorului ţintă z. 
 În noua formulare, Problema învăţării devine Problema minimizării:  
 

Problema minimizării: Să se minimizeze funcţionala risc (14) în raport cu clasa de 
funcţii aproximante F(x,w), când w ∈ W. 

 
 Problema minimizării este complicată datorită faptului că distribuţia probabilistică  P(x,z) 
este necunoscută, după cum se vede şi din relaţia de mai jos: 
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    ( )P( ) P( )Px, z = z,x x      (15) 
 Singura informaţie disponibilă este cea conţinută în mulţimea de antrenament 

( ){T ii i= =x z, ,2, ,1 K }N . De aceea vom face apel la principiul inductiv al minimizării riscului 
empiric dezvoltat de Vapnik [4]. 
 Ideea fundamentală a principiul inductiv al minimizării riscului empiric este de a utiliza un 
set independent de date de antrenament ( ){ }T ii i= =x z, ,2, ,1 K N pentru funcţia aproximantă 
F(x,w), cu scopul de a defini funcţionala risc empiric: 

    ( ) ((R
N

d Femp i i
i

N

w z x=
=
∑1

1

; , ))w    (16) 

 Funcţionala risc empiric nu mai este în acest moment dependentă de distribuţia 
probabilistică  P(x,z). Teoretic, la fel ca şi funcţionala risc R(w) (14), funcţionala risc empiric 
Remp(w) (16) poate fi minimizată în raport cu parametrul w, care corespunde tăriilor sinaptice ale 
reţelei neuronale. 
 Să facem notaţiile: 

• - wemp vectorul tăriilor sinaptice care minimizează funcţionala risc empiric Remp(w); 
• - F(x,wemp)  funcţia aproximantă (reţeaua neuronală) corespunzătoare lui wemp .  
• - w0 vectorul tăriilor sinaptice care minimizează funcţionala risc R(w); 
• - F(x,w0)  funcţia aproximantă (reţeaua neuronală) corespunzătoare lui w0.  

 
 Problema învăţării, respectiv a minimizării devine în această abordare: 

în ce condiţii funcţia aproximantă F(x,wemp) este "suficient de aproape" de 
aproximanta dorită F(x,w0) ? Condiţia de apropiere va fi măsurată prin diferenţa 
dintre riscul empiric Remp(w) şi riscul R(w). 

 
 Pentru orice valoare fixată w* a vectorului tăriilor sinaptice, funcţionala risc  R(w*) 
determină media următoarei variabile aleatoare: 
    ( )(A d F

w
z x w∗ = ∗; , )      (17) 

 Pe de altă parte, funcţionala risc empiric Remp(w*) reprezintă media aritmetică a variabilei 
aleatoare . Pe baza unor elemente clasice de teoria probabilităţilor, dacă dimensionalitatea 

mulţimii de antrenament 

A
w∗

( ){T ii i= =x z, ,2, ,1 K }N tinde la infinit, atunci media aritmetică a 
variabilei aleatoare va converge către media sa. Această remarcă ne dă dreptul, din punct de 
vedere teoretic, să utilizăm în locul funcţionala risc R(w), funcţionala  risc empiric R

A
w∗

emp(w).  
 Dar nu trebuie să ne aşteptăm ca vectorul tăriilor sinaptice ce minimizează funcţionala  risc 
empiric Remp(w) să minimizeze de asemenea şi funcţionala risc R(w).  
 Pentru aceasta vom aplica principiul minimizării riscului empiric, formulat astfel: 

• în locul funcţionala risc R(w) vom construi funcţionala  risc empiric Remp(w) conform 
formulei (16), utilizând mulţimea dată de antrenament ( ){ }T ii i= =x z, ,2, ,1 K N ; 
• - fie wemp vectorul tăriilor sinaptice care minimizează funcţionala risc R(w) relativ la 
spaţiul tăriilor sinaptice W. Dacă dimensionalitatea N a mulţimii de antrenament tinde 
la infinit şi dacă funcţionala  risc empiric Remp(w) va converge uniform către funcţionala 
risc R(w), atunci funcţionala  risc empiric Remp(w) va converge în probabilitate către cea 
mai mică valoare posibilă a funcţionalei risc R(w), w ∈ W.  Uniform convergenţa se 
defineşte astfel: 

  ( ) ( )Prob sup ,
w W

w w
∈

− >
⎧
⎨
⎩

⎫
⎬
⎭
→R R dacã Nemp ε 0 → ∞    (18) 
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 ultima relaţie reprezintă condiţia necesară şi suficientă pentru valabilitatea  principiul 
minimizării riscului empiric. 
 
 
Capacitatea de generalizare. 
 
 Elemente introductive referitoare la capacitatea de generalizare a reţelelor neuronale 
prezentate în acest capitol, sugerează posibilitatea de a cuantifica estimativ capacitatea reţelelor 
neuronale de a generaliza, în funcţie de arhitectura sa şi de dimensiunea mulţimii de antrenament. 
Pentru aceasta, vom selecta din numeroasele posibilităţi de cuantificare a generalizării, următoarele 
[3]: 

•  Numărul mediu de posibilităţi de generalizare în raport cu o mulţime de 
antrenament. 
•  Probabilitatea ca reţeaua neuronală antrenată să genereze, în medie, răspunsuri 
corecte pentru date de intrare alese aleator din spaţiul datelor de intrare. 
•  Probabilitatea ca reţeaua neuronală antrenată să genereze, în medie, răspunsuri 
incorecte pentru date de intrare alese aleator din spaţiul datelor de intrare. 

 
 Vom urma o idee prezentată în [4], pentru a studia prin prisma acestor elemente, capacitatea 
de generalizare a unei reţele neuronale . 
 Fie o mulţime de reţele neuronale cu o arhitectură dată fixată, specificată prin numărul de 
straturi, numărul de neuroni din fiecare strat, conexiuni sinaptice, funcţii de activare. Fiecărei reţele 
neuronale îi corespunde o mulţime de tării sinaptice, pe care o vom nota w. O mulţime de tării 
sinaptice w poate fi interpretată ca un punct în spaţiul tăriilor sinaptice posibile, spaţiu pe care-l 
vom numi tot spaţiul tăriilor sinaptice W. 
  Când vom considera media în raport cu mulţimea reţelelor neuronale, ea va 
reprezenta media în raport cu spaţiul tăriilor sinaptice., medie calculată în raport cu o densitate 
probabilistică a priori, notată ρ(w). 
  Putem defini volumul disponibil V0 al spaţiului tăriilor sinaptice: 
         (19) V d0 = ∫ w wρ( )

 Orice punct w din spaţiul tăriilor sinaptice, reprezintă o reţea neuronală ce implementează 
funcţia F(x,w), funcţie corespunzătoare valorilor generate de neuronii din stratul de ieşire, când la 
stratul de intrare se prezintă vectorul de intrare x. Astfel spaţiul tăriilor sinaptice este partiţionat 
într-o mulţime de submulţimi disjuncte, câte una pentru fiecare funcţie f(x), pe care mulţimea de 
reţele neuronale o poate implementa. 
 Volumul subspaţiului care implementează o funcţie particulară f, este: 
        (20) V f d f0 ( ) ( ) ( )= ⋅∫ w w wρ θ

 

unde:    θ f

F f
altfel

( )
, ( ) ( ), ( )

,
w

x w x X
=

= ∀ ∈⎧
⎨
⎩

1
0
, x

  (21) 

 
 Fracţia din spaţiul tăriilor sinaptice care implementează o funcţie dată f, sau probabilitatea 
de a obţine funcţia f, când alegem tării sinaptice aleatoare, conform distribuţiei ρ(w) este: 

     R f V f
V0

0

0

( ) ( )
=     (22) 

 Însumând în raport cu mulţimea tuturor funcţiilor, putem defini entropia informaţională: 
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    S R f R
f

0 0 2 0= − f⋅∑ ( ) log ( )     (23) 

 S0 reprezintă diversitatea funcţională a arhitecturii reţelelor neuronale. Dacă S0  are o 
valoare mare, avem nevoie de mai multă informaţie pentru a specifica o funcţie particulară. În cazul 
în care avem K funcţii posibile, de volum egal V0(f), obţinem: 

 V f K
f

0

1

0
( ) ,

,
= ∈⎧
⎨
⎪

⎩⎪

dacă celor K funcţii de volum egal
altfel

   (24) 

 
 Atunci obţinem: S K  sau 20 2= log 0S K=      (25) 
 Să considerăm o paradigmă de învăţare supervizată, în care se prezintă perechi de date 

, ce corespund unei aplicaţii ţintă: ( , )x zi i

    z xi if i= =( ), , ,1K N     (26) 
 Presupunând că reţeaua neuronală a învăţat cu succes (funcţia eroare converge către zero), 
punctul w ce corespunde acestei reţele neuronală, va fi localizat într-un subspaţiu al tăriilor 
sinaptice ce este compatibil cu datele de antrenament ( , . Presupunând că mulţimea de 
antrenament conţine N perechi de date ( , , atunci volumul subspaţiului rămas este: 

)x zi i

)x zi i

        (27) V d I FN
i

N

i=
=
∏∫ w w xρ( ) ( , )

1

unde:    I F
F f

altfeli
i( , )

, ( , ) (
,

x
x w x

=
=⎧

⎨
⎩

1
0

i )    (28) 

 VN va conţine subspaţiul corespunzător funcţiei ţintă f , împreună cu alte subspaţii 
corespunzătoare altor funcţii ce coincid cu f  pe mulţimea datelor de antrenament. Evident, cu cât N 
este mai mare, mulţimea funcţiilor ce coincid cu f  pe mulţimea datelor de antrenament este mai 
mică. De aici rezultă că procesul de învăţare poate fi privit ca un proces de reducere continuă a 
spaţiului admisibil al tăriilor sinaptice, adică: 
         (29) V V V VN0 1 2≥ ≥ ≥ ≥...
 Partea din spaţiul tăriilor sinaptice ce corespunde unei funcţii particulare f, se modifică după 
învăţarea a N exemple, de la R0(f) la: 

     R f
V f

VN
N

N

( )
( )

=     (30) 

 VN(f) reprezintă volumul spaţiului tăriilor sinaptice consistent atât cu funcţia f cât şi cu 
exemplele de învăţat ( , . Avem: )x zi i

    (31) V f d I F V f I FN f
i

i
i

i( ) ( ) ( ) ( , ) ( ) ( , )= =∫ ∏ ∏
= =

w w w x x
P P

ρ θ
1

0
1

 Entropia corespunzătoare este: 
 
        (32) S R f RN P

f
N= − ⋅∑ ( ) log ( )2 f

 SN  reprezintă o măsură a numărului de funcţii implementabile, ce sunt compatibile cu 
mulţimea de antrenament. 
 SN  - SN-1 reprezintă cantitatea de informaţie obţinută prin învăţarea datei xN. Dacă învăţarea 
s-a desfăşurat cu succes, obţinem: 
     SN = S0 - N     (33) 
 În acest fel putem să ne gândim la o limită a numărului necesar de date de antrenament 
pentru a învăţa o aplicaţie particulară f  sau putem să ne gândim la estimarea eficienţei învăţării [2]. 
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 Să presupunem că avem o mulţime de antrenament x1, x2,..., xN aleasă aleator cu ajutorul 
unei distribuţii P(x), fiecare xi.,i=1,…,N fiind independent.  
 Atunci, fiecare factor  este independent de ceilalţi, ceea ce ne permite să considerăm 
o medie în raport cu mulţimea tuturor datelor de antrenament. Vom folosi pentru această medie 
notaţia <…>, obţinând: 

I f i( , )x

   V f V f I f V f g fN i

N
N( ) ( ) ( , ) ( ) ( )= ⋅ = ⋅

=
∏0

1
0x

μ

  (34) 

Media este relativă la x1, x2,..., xN , cu tăriile sinaptice corespunzătoare P(xi), şi avem: 
   g f I f f f( ) ( , ) ( ( ) ( ))= = =x xProb x    (35) 
reprezentând: 

• probabilitatea ca o funcţie particulară f să fie egală cu funcţia ţintă f  în punctul x, 
punct ales aleator de distribuţia P(x). 
• g(f) se numeşte abilitatea de generalizare a lui f, specificând de fapt cât de mult f se 
apropie de f . g(f) ∈ [0,1] fiind independentă de mulţimea de antrenament. 

 Să notăm cu PN(f) probabilitatea ca o funcţie f să implementeze, după învăţarea a N exemple 
de antrenament, funcţia ţintă f . Atunci: 

    P f
V f

V
V f

VN
N

N

P

P

( )
( ) ( )

= ≈     (36) 

 Aproximarea de mai sus se bazează pe ipoteză că VN nu variază mult în raport cu o mulţime 
de antrenament, deci V VN N≈  pentru orice mulţime de antrenament. 
 Cu ajutorul formulei (36) putem calcula distribuţia abilităţii de generalizare în raport cu 
toate funcţiile posibile f: 
 

  

ρ δ δ

δ ρ

N N
f

N
f

N

f

N

g P f g g f V f g g f

g V f g g f g g

( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( )

≡ ⋅ − ∝ ⋅ −

= ⋅ − ∝

∑ =∑

∑ 0 0

 (37) 

 Prin normalizare obţinem: 

    ρ
ρ

ρ
N

N

N
g

g g
g g d

( )
( )

( ) ( )* *
=

⋅

⋅∫
0

0 g*
    (38) 

 Deoarece distribuţia iniţială ρ δ0 0
1

0( ) ( ) ( ( ))g V V f g g f
f

= ⋅ −− ∑  depinde doar de arhitectura 

reţelei neuronale şi de restricţia a priori încorporată în ρ(w), rezultă din (2.62) următorul rezultat 
remarcabil:  

putem calcula distribuţia ρP(w) după N exemple de antrenament, dacă cunoaştem 
distribuţia abilităţii de generalizare, înainte de faza de învăţare. 

 Putem să considerăm şi valoarea medie a abilităţii de generalizare: 

   G N g g dg
g g

g g dg
N

N

N
( ) ( )

( )

( )
= ⋅ =∫

∫
∫

+

ρ
ρ

ρ0

1
1

00

1

00

1

dg
   (39) 

 Reprezentând grafic G(N) în raport cu N-numărul de date de antrenament, obţinem curba de 
învăţare. G(N) poate fi folosit pentru a determina N în scopul învăţării reţelei neuronale la un nivel 
corespunzător de performanţă. 
 Comportamentul asimptotic a lui ρN(g) şi deci şi a lui G(N)  când N → ∞, este determinat de 
forma distribuţiei iniţiale ρ0(g) în jurul punctului g = 1. Avem două posibilităţi: 
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(a). Există o tranziţie abruptă de lungime ε  între g = 1 şi următoarea valoare g = g0, pentru care 
ρ0(g0). Atunci avem: 

    1− ∝
−

G N e
N

( ) ε      (40) 
(b). Dacă nu există tranziţii abrupte la ρ0(g), atunci avem: 

    1 1
− ∝G N

N
( )      (41) 

 Aceste rezultate deosebite prezentate în acest paragraf au o mare importanţă teoretică:  
 

putem calcula media probabilistică a abilităţii de generalizare corectă, când reţeaua 
neuronală a fost antrenat utilizând o mulţime de antrenament cu N elemente, dacă 
cunoaştem în principiu o funcţie ce poate fi calculată înainte de începerea fazei de 
antrenare.  
 

 Practic însă e dificil să exploatăm aceste rezultate, deoarece un calcul analitic al distribuţiei 
a priori ρ0(g) este posibil doar pentru probleme simple. 
 De asemenea, utilizarea abilităţii de generalizare medie, în raport cu subspaţiile spaţiului 
tăriilor sinaptice, consistente cu mulţimea de antrenament, nu este foarte potrivită, deoarece în 
practică legea de învăţare poate favoriza unele subspaţii în raport cu altele. În fond, o procedură de 
învăţare reprezintă un drum în spaţiul tăriilor sinaptice, drum ce reprezintă ajustarea graduală a 
tăriilor sinaptice cu scopul minimizării funcţiei eroare şi nu o alegere aleatoare a tăriilor sinaptice 
restricţionate de mulţimea de antrenament. Densitatea probabilistică iniţială ρ(w) încorporează într-
un fel acest efect, dar nu în totalitate. De aceea vom încerca să studiem abilitatea de generalizare în 
cel mai rău caz şi nu în cel mediu. 
 Pentru a simplifica analiza noastră, vom considera problema clasificării binare, care 
corespunde unei reţele neuronale ce are în stratul de ieşire un singur neuron, cu funcţia de activare 
sgn(x). 
  Ne interesează g(f) pentru funcţia f pe care o implementează reţeaua neuronală, pentru a şti 
cât de bine aproximează funcţia f, funcţia ţintă f . 
 Să considerăm o mulţime de antrenament, constituită din P perechi de puncte , i = 
1,…,N, cu 

( , )x zi i

z xi if i= =( ), , ,1K N . 
 Fie g  numărul de mulţimi de antrenament, de dimensionalitate N, corect clasificate de 
funcţia F(⋅,w), implementată de reţeaua neuronală. Scopul legii de învăţare este de a ajusta tăriile 
sinaptice astfel încât să maximizăm , adică  = 1, în condiţiile unei învăţări perfecte. 

FN ( )

g FN ( ) g FN ( )
 Diferenţa dintre g(f) şi  este datorată faptului că g(f) reprezintă cât de bine 
aproximează funcţia f funcţia ţintă 

g fN ( )
f , în timp ce g  reprezintă cât de bine aproximează funcţia f 

funcţia ţintă 
fN ( )

f , ca o medie relativă la o mulţime de antrenament cu N elemente.  
 Cu alte  cuvinte  reprezintă o aproximantă a lui g(f) , în condiţii ideale: g fN ( )
    g f g f NN ( ) ( ),→ →∞     (42) 
 In practică însă, avem relaţia: 
          (43) g F g fN ( ) ( )>
 pentru funcţia F(⋅,w) obţinută ca urmare a procesului de învăţare. 
 Dacă însă vom considera o funcţie arbitrară f din mulţimea funcţiilor pe care reţeaua 
neuronală le poate implementa şi o funcţie F(⋅,w)  asociată mulţimii de antrenament, vom fi în stare 
să estimăm cât de “proastă” poată fi aproximarea funcţiei ţintă f  de către f, în cel mai rău caz. Cum 
acest “cel mai rău caz” este aplicabil oricărei funcţii f implementabile de reţeaua neuronală, 
obţinem rezultatul: 
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  Prob(max ( ) ( ) ) ( )g f g f m N eN

N

− > ≤ ⋅ ⋅
−

⋅

ε
ε

4 2
2

8    (44) 
unde m(N) este o funcţie ce depinde de dimensionalitatea N a mulţimii de antrenament, fiind numită 
funcţie de creştere şi reprezintă numărul maxim de funcţii diferite (binare în cazul nostru) care pot 
fi implementate de reţeaua neuronală pe baza unei mulţimi de antrenament cu N elemente. 
 Foarte importanta relaţie (44) a fost obţinută de Vapnik şi Chervonenkis [4]. Membrul stâng 
al relaţiei de mai sus reprezintă probabilitatea ca cea mai slabă aproximare să depăşească o limită ε, 
pentru orice funcţie implementabilă de către reţeaua neuronală.  
 Dacă de exemplu ε = 0.01, vom şti cu probabilitatea de 99% că  şi g(f) sunt la distanţa 
de cel mult ε una de alta, pentru orice funcţie f implementabilă de reţeaua neuronală. 

g fN ( )

 Dacă procesul de învăţare s-a desfăşurat cu succes, obţinând un rezultat perfect, adică 
 = 1, atunci vom şti cu o probabilitate foarte mare că: g FN ( )

      > 1 - ε     (45) g( fw )
 Dacă funcţia de activare este funcţia sgn(x) sau funcţia treaptă, avem un număr total de 2N 
funcţii binare diferite, deci, în general: 
     m(N)  ≤  2N     (46) 
 Limitările funcţiei de creştere pot fi generate şi de arhitectura reţelei neuronale. De exemplu 
dacă tăriile sinaptice pot lua valori doar într-o mulţime de valori cu k valori distincte, atunci: 
    m(N)  ≤  k|w|      (47) 
unde |w| reprezintă numărul total de conexiuni sinaptice ale reţelei neuronale.  
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