Invatarea retelelor neuronale pe baza de exemple
Conf. dr. Calin Endchescu, Universitatea Petru Maior Targu-Mures

The supervised learning process of a neural network, or the approximation of a smooth
function using a set of examples, called training set, is ill-posed. Usually the training set doesn’t
contain enough information, therefore the condition of uniqueness is not satisfied. In order to
transform the ill-posed problem of approximating a function from sparse examples into a well-
posed problem, we need to take into consideration some a priori hypothesis about the function to be
approximated. What is the weakest a priori hypothesis that can be considered without affecting the
general frame of function approximation? The learning process (function approximation) is efficient
if we obtain good generalization properties. But the generalization properties are a result of a
certain level of redundancy, more precisely we can say that generalization properties are a result of
the property that small changes of the input parameters results in small changes of the output
parameters. But this property is named smoothness. Concluding, we can say that the learning
process of a neural network is equivalent to the approximation of a smooth function from examples
(the training set).

Cea mai semnificativa proprietate a retelelor neuronale este capacitatea de a invata din
mediul inconjurator si de a-si Imbunatéti performantele pe baza acestui proces de invatare. Reteaua
neuronald invata pe baza unui proces iterativ de ajustare a tariilor sinaptice si eventual al nivelului
de activare. Daca procesul de invatare decurge bine, atunci reteaua neuronald acumuleaza tot mai
multe informatii, la fiecare iteratie.

Evident ca atunci cand folosim termenul de "proces de invatare" ne situam intr-o
terminologie mult prea larga, care este dependentd de mai multi factori. Pentru aceasta vom defini,
in contextul calculului neuronal, "invatarea" conform cu [4], in felul urmator:

Def.1: fnvd,tarea este un proces prin care parametrii retelei neuronale sunt adaptati
permanent prin intermediul unor stimuli proveniti de la mediul inconjurdator caruia ii
apartine reteaua neuronalda. Tipul de invatare este determinat de forma de modificare a
parametrilor retelei neuronale.

Definitia de mai sus contine urmatoarea secventa de evenimente[2]:

o FEvenimentul I: Reteaua neuronald primeste stimuli de 1la mediul inconjurator;

o FEvenimentul 2: Reteaua neuronald se modifica ca raspuns la stimuli,

o FEvenimentul 3: Ca urmare a acestor modificari permanente, care afecteaza structura sa interna,
reteaua neuronala raspunde de fiecare data intr-un nou mod mediului de la care vin stimuli.

Sa incercam sa dam o formulare matematica acestui proces descris mai sus. Pe baza celor
prezentate mai sus si in capitolul anterior, am vazut cd ceea ce se modifica in cadrul procesului de
invatare este tdria sinapticd. De aceea avem formularea matematica cea mai generala a procesului
de invéatare, exprimat prin formula:

Wji(t+1) :Wji([)-'-iji(t) (1)
¢ wi(t+1) si w;(?) reprezintd noua si vechea valoare a tariei sinaptice wj; care uneste axonul
neuronului i de o dendritd a neuronului ;.
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¢ Aw,(t)reprezintd ajustarea aplicatd tariei sinaptice wj(f), la momentul ¢, obtindndu-se
valoarea wj(#+1) la momentul #+1, in urma procesului de ajustare.

Ecuatia (1) contine in mod evident efectele Evenimentelor 1, 2 si 3 prezentate mai sus.

Ajustarea Aw ,(t)este obtinutd ca urmare a unor stimuli ai mediului inconjurator (Evenimentul 1),

iar valoarea modificatd a tariei sinaptice w;(#+1) defineste schimbarea din reteaua neuronald, ca un
rezultat al stimulilor prezentati retelei neuronale (Evenimentul 2). Din momentul #+1 reteaua
neuronald raspunde intr-un mod nou mediului Inconjurator deoarece taria sinapticd s-a modificat,
devenind wj(#+1) (Evenimentul 3).

Def. 2: Vom numi algoritm de invatare, un set de reguli predefinite care solutioneaza problema

"Invatarii".

Un alt factor important relativ la procesul de invétare este modul de raportare a unei retele

neuronale la mediul inconjuritor. In acest context putem defini:

Def. 3: Vom numi paradigma de invatare, un model al mediului inconjurator in care are loc

procesul de invatare al retelei neuronale.

Invatare supervizata

Modificarea tariilor sinaptice este facutd pe baza comparatiei dintre vectorul de iesire
vy =0f,»5,...,yh) obtinut la stratul de iesire si vectorul tintd z* =(z{',z,...,z4),u=1,...,P, ce
reprezinta rezultatul dorit a se obtine la stratul de iesire, cand la stratul de intrare s-a prezentat
vectorul de intrare x* = (x;',x/,...,x%),u=1,..., P din multimea de antrenament.

VectO}*ul tinta z“ este furnizat de un profesor (antrenor), de unde si denumirea de invatare
supervizatd. Invatarea supervizatd presupune prezentarea de cdtre un antrenor a unor perechi de
date de forma (x“,z"),u=1,...,P, ce formeazda o multime de date, numitd multime de
antrenament:

T= {(x”,z”)|,u:1,2,...,P} )

Diferenta dintre raspunsul obtinut y si rdspunsul dorit z, reprezintd eroarea si este folosita
pentru a modifica tariile sinaptice, pe baza unui algoritm specific, numit lege de invatare.

Natura statistica a procesului de Invatare

Sa consideram un fenomen descris printr-un vector x € R" ce reprezintd o multime de
variabile independente, si un scalar real z € R ce reprezintd o variabila dependentd. Elementele
vectorului x pot fi considerente ca vand interpretari fizice diferite.

Sa presupunem de asemenea, ca avem o multime de N masuratori (observatii) ale variabilei
X, §1 anume:

X1, X2, X3, ..., XN (3)
si o0 multime corespunzatoare de scalari z, notata:
Z1, 22, 735 -5 ZN “4)

In mod obisnuit, nu posedim informatiile necesare despre relatia exacti dintre variabilele x
si z. De aceea vom nota aceasta relatie astfel:
z=f(x)+¢ (5)
unde f este o functie de variabila x, iar ¢ este eroarea reprezentatd sub forma unei variabile
aleatoare. Eroarea ¢ semnifica eroarea pe care o facem In estimarea dependentei functionale dintre
variabilele x si z. Ecuatia (5) de mai sus este un model statistic [4], numit model regresiv.
Putem defini functia f'a modelului regresiv ca fiind:

f(x) = E[2x] (6)

[Nala]
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unde E este operatorul de medie statistica. E[z|x] reprezintd media conditionala, semnificand faptul

ca vom obtine, in medie, valoarea z, dacd avem o realizare particulara a lui x.
O retea neuronala reprezinta de fapt un mecanism fizic pentru a implementa acest obiectiv:
predictionarea lui z pe baza lui x. Acest lucru se realizeaza prin codificarea informatiei continuta in

multimea de antrenament 7" = {(szi )| i=12,....N } in tariile sinaptice. Este evidenta interpretarea

din punct de vedere al calcului neuronal, datd celor doud marimi x si z: X reprezintd vectorul
(stimulul) de intrare in reteaua neuronala, iar z reprezinta valoarea tinta (doritd) a se obtine la stratul
de iesire al retelei neuronale.

Sa notdm cu w, vectorul tariilor sinaptice a retelei neuronale, care va avea rolul de a
aproxima modelul regresiv exprimat prin ecuatia (6). Vom nota cu y valoarea de iesire generatd de
reteaua neuronald. Atunci, prin propagarea valorii de intrare x, de la stratul de intrare, cétre stratul
de iesire, unde obtinem valoarea y, putem scrie corespondenta [3]:

y=F(x,w) (7)

De asemenea, datorita faptului cd multimea de antrenament, contine si vectori tintd, care
sunt furnizati de un antrenor, este evidenta analogia cu paradigma invatarii supervizate. De aceea,
modificarea vectorului tariilor sinaptice se va face printr-un proces iterativ, ca raspuns la semnalul
eroare:

e=z-y (®)

Daca ar fi sa reprezentam grafic modelul regresiv (6), sub noua sa interpretare data de

calculul neuronal, am obtine diagrama de mai jos:

7F(7W) : i@_ .
e

Fig. 1: Modelul corespunzator calculului neuronal.

Modificarea vectorului tariilor sinaptice, se face folosind un algoritm de invétare de tip
corectie a erorii MSE (3) sau (4). Putem atunci scrie [2]:

1l a1 a1 1 B 2
E(w)=_Ee ]—EE[(z—y) |= 2E[(z Flx,w))'] ©)
Optimizarea retelei neuronale Tnseamna minimizarea functiei eroare. Pentru aceasta re

scriem relatia (9):

E(w) = %E[(z—f(x) + f(x) —F(x,w))z] =

Modelul general al procesului de invatare

N1
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Din studiul statistic al procesului de invdtare am vazut echivalenta dintre problema
aproximdrii unei  functii  descrise cu ajutorul unei multimi de antrenament

T= {(x l.,z,.)| i=12,....N } cu procesul de invatare al unei retele neuronale pe baza aceleasi multimi
de antrenament 7 = {(xi,zi)| i=12,....N } . De asemenea modelele de aproximare prezentate

corespundeau paradigmei de invatare supervizatd. Un model de invatare supervizatd are trei
componente reprezentabile astfel [3]:

Mediul Antrenor

inconjurator X | u—— (Profesor)
descris de X15X25.0- XN

distributia P(x)

Fig. 2: Modelul invatarii supervizate.

Cele trei componente sunt:
o Mediul inconjurator X, care transmite stimulul x € X, generat de o distributie probabilistica
oarecare fixata P(x);
e Antrenorul, care furnizeaza raspunsurile tintd z, ce se doresc a se obtine la iesirea retelei
neuronale, pentru orice vector de intrare X, in concordantd cu distributia probabilisticd fixa P(z|x).

Vectorii X i z sunt legati prin relatie functionala necunoscuta f:

z= f(x) (11)
e Reteaua neuronala F(X,w) - este capabild sd implementeze relatia functionald dintre x si z,
descrisa prin relatia: y = F(x,w) (12)

Problema 1invatirii constd in selectarea, pe baza unei multimi de antrenament
T= {(x l.,z[)| i=12,...,.N } cunoscutd a priori, a functiei F(X,w) ce aproximeaza vectorul tintd z,

furnizat de antrenor. Selectia functiei F(x,w) se bazeaza deci pe cele N elemente ale multimii de
antrenament 7, care sunt independent si identic distribuite.
Problema invatarii: Problema fundamentala a invatarii supervizate este daca multimea de

antrenament T = {(Xl.,Zi)| i= 1,2,...,N} contine suficiente informatii pentru a putea construi o

functie aproximanta F(x,w), deci o retea neuronald, capabila sa invete cat mai bine datele de
antrenament §i in plus sa aiba capacitatea de generalizare.

Proprietatea de generalizare reprezinta capabilitatea unei retele neuronale de a raspunde la
date de intrare ce nu au facut parte din multimea de antrenament. Este evident faptul ca scopul
invatarii unei retele neuronale trebuie sa fie obtinerea unei bune capacititi de generalizare.
Generalizarea poate fi privita, daca consideram reteaua neuronald ca o aplicatie intre spatiul datelor
de intrare si spatiul datelor de iesire (obtinute la stratul de iesire), ca fiind abilitatea de interpolare a
aplicatiei respective.
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Sa presupunem ca dupa ce o retea neuronald a efectuat faza de invatare, dorim sa extragem o
lege care sa defineascd comportamentul ei. Vom reprezenta schematic modul de extragere a unei
legi in Fig.3.

Fig.3:Reprezentarea  schematicd a
modului de extragere a unei legi.

Sa explicam schema din figura de mai sus. X reprezintd spatiul tuturor datelor de intrare,
perechi de forma (vectori de intrare, vectori tintii), date ce sunt consistente cu o anumiti lege R. In
procesul de invatare o submultime a legii R, notatd T, si care reprezintd multimea de antrenament,
este folositd pentru a invata o retea neuronald. Dupa ce procesul de invitare s-a terminat, testam
capacitatea de generalizare a retelei, cu ajutorul unei submultimi G c R, disjuncta de T.

Putem deci concluziona ca performantele retelei neuronale, relative la submulti-mea T < R,
reprezintd capacitatea de memorare a retelei, iar performantele relative la submultimea G — R,
reprezintd capacitatea de generalizare a retelei neuronale. De obicei T si G sunt alese aleator din
multimea R, ambele fiind generate de aceeasi lege de distributie.

De fapt, in procesul de invatare, reteaua neuronald invata doar elementele sub-multimii T,
fara a sti nimic despre G si R. De aceea este natural ca aceasta retea neuronald, sa fie capabila de a
generaliza orice multime de date de intrare care este consistentd cu T. Acest lucru este reprezentat
in Fig.4.

Fig.4. Reprezentarea schematicd a
capacitatii de generalizare a unei
retele neuronale.

Problema generalizarii poate fi ingreunatd dacd saturam procesul de invitare a retelei
neuronale printr-un numir prea mare de date de antrenament. In aceasti situatie capacitatea de
generalizare a retelei neuronale este slaba. Ca un exemplu, in Fig.5., problema generalizarii datorita
supra-saturdrii procesului de invatare, privita prin prisma interpolarii datelor de antrenament.

<N

BDD-A23844 © 2005 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.159 (2026-01-08 15:58:53 UTC)



(a) (b)

\4
\4

Fig.5. Reprezentarea schematica a problemei generalizarii, unde avem:
o - date de antrenament; e - date pentru generalizare. (a). Invatare reusitd, generalizare
buna. (b). Invatare saturata, generalizare slaba.

Aceste elemente referitoare la capacitatea de generalizare a retelei neuronale, sugereaza
posibilitatea de a cuantifica estimativ capacitatea retelei neuronale de a generaliza, in functie de
arhitectura sa si de dimensiunea multimii de antrenament. Pentru aceasta, vom selecta din
numeroasele posibilitati de cuantificare a generalizarii, urmatoarele:

e Numirul mediu de posibilititi de generalizare in raport cu o multime de
antrenament.

e Probabilitatea ca reteaua neuronalda antrenatd sa genereze, In medie, raspunsuri
corecte pentru date de intrare alese aleator din spatiul datelor de intrare.

e Probabilitatea ca reteaua neuronald antrenatd sd genereze, in medie, raspunsuri
incorecte pentru date de intrare alese aleator din spatiul datelor de intrare.

Raspunsul la Problema invatarii poate fi obtinut daca privim aceasta problema prin
prisma teoriei aproximarii, adica studiem invatarea unei retele neuronale ca o problemda
de aproximare: sa gasim functia F(X,w) care aproximeaza cel mai bine functia dorita f(x)

[].

Sa notdm cu d eroarea dintre vectorul tinta z, ce se doreste a se obtine pentru vectorul de
intrare X, si rdspunsul generat de reteaua neuronald, exprimat prin functia aproximantd F(X,w).
Definita aceasta eroare cu ajutorul distantei Euclidiene:

d(z;F(x,w)) = ||Z—F(x,w)||2 (13)
Vom defini functionala risc [2] ca fiind media erorii definite mai sus:
R(w) = Id(z;F(x, w))dP(x,z) (14)

integrala de mai sus este consideratd in sens Riemann-Stieljes, iar P(x,z) reprezinta
distributia probabilisticd a vectorului de intrare x §i a vectorului tinta z.
In noua formulare, Problema invatarii devine Problema minimizarii:

Problema minimizarii: Sa se minimizeze functionala risc (14) in raport cu clasa de
functii aproximante F(X,w), cand w € W.

Problema minimizarii este complicata datorita faptului ca distributia probabilistica P(x,z)
este necunoscutd, dupd cum se vede si din relatia de mai jos:

<N/
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P(x,z) = P(z,x)P(x) (15)
Singura informatie disponibilda este cea continutd In multimea de antrenament
T= {(x ,.,z,.)| i=L2,....N } . De aceea vom face apel la principiul inductiv al minimizarii riscului

empiric dezvoltat de Vapnik [4].
Ideea fundamentala a principiul inductiv al minimizdrii riscului empiric este de a utiliza un

set independent de date de antrenament 7 = {(xi,zi)|i: L,2,...,.N } pentru functia aproximanta

F(x,w), cu scopul de a defini functionala risc empiric:
1 N
Remp(w) :N;d(zi;F(XDW)) (16)

Functionala risc empiric nu mai este in acest moment dependentd de distributia
probabilisticd P(x,z). Teoretic, la fel ca si functionala risc R(w) (14), functionala risc empiric
Remp(W) (16) poate fi minimizatd in raport cu parametrul w, care corespunde tariilor sinaptice ale
retelei neuronale.

Sa facem notatiile:
- Wemp vectorul tariilor sinaptice care minimizeaza functionala risc empiric Re,(W);
- F(X,Wenpy) functia aproximantd (reteaua neuronald) corespunzatoare lui Wy, .
- wy vectorul tariilor sinaptice care minimizeaza functionala risc R(w);
- F(x,wq) functia aproximanta (reteaua neuronald) corespunzatoare lui wy.

Problema invatarii, respectiv a minimizarii devine Tn aceasta abordare:
in ce conditii functia aproximanta F(X,We.p) este "suficient de aproape" de
aproximanta dorita F(x,wy) ? Conditia de apropiere va fi masurata prin diferenta
dintre riscul empiric Ren,(W) si riscul R(w).

Pentru orice valoare fixatd w* a vectorului tariilor sinaptice, functionala risc R(w¥)
determind media urmatoarei variabile aleatoare:

A= d(z;F(x,w*)) (17)

Pe de altd parte, functionala risc empiric R.,,(W*) reprezintd media aritmeticd a variabilei
aleatoare A .. Pe baza unor clemente clasice de teoria probabilitatilor, daca dimensionalitatea

multimii de antrenament 7 = {(xi,zi)|i= L2,...,.N } tinde la infinit, atunci media aritmetica a
variabilei aleatoare A .va converge catre media sa. Aceasta remarcd ne da dreptul, din punct de

vedere teoretic, sa utilizam in locul functionala risc R(w), functionala risc empiric Re,(W).
Dar nu trebuie sa ne asteptam ca vectorul tariilor sinaptice ce minimizeaza functionala risc
empiric R..,(W) s minimizeze de asemenea si functionala risc R(w).
Pentru aceasta vom aplica principiul minimizarii riscului empiric, formulat astfel:
¢ in locul functionala risc R(w) vom construi functionala risc empiric Re,,(W) conform

formulei (16), utilizand multimea datd de antrenament 7" = {(xi,zi)| i=12,....N } ;

o - fie w,,,, vectorul tdriilor sinaptice care minimizeazd functionala risc R(w) relativ la
spatiul tariilor sinaptice W. Dacéd dimensionalitatea N a multimii de antrenament tinde
la infinit si daca functionala risc empiric R.,,,(W) va converge uniform catre functionala
risc R(w), atunci functionala risc empiric R.,,(W) va converge in probabilitate citre cea
mai micd valoare posibild a functionalei risc R(w), w € W. Uniform convergenta se
defineste astfel:

Proby sup ‘R(w)—R

(W)‘>8 — 0,dacd N — « (18)
weW

emp
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ultima relatie reprezinta conditia necesara si suficientd pentru valabilitatea principiul
minimizarii riscului empiric.

Capacitatea de generalizare.

Elemente introductive referitoare la capacitatea de generalizare a retelelor neuronale
prezentate n acest capitol, sugereaza posibilitatea de a cuantifica estimativ capacitatea retelelor
neuronale de a generaliza, in functie de arhitectura sa §i de dimensiunea multimii de antrenament.

ege v,

[31]:
e Numarul mediu de posibilititi de generalizare in raport cu o multime de
antrenament.
e Probabilitatea ca reteaua neuronald antrenatd sa genereze, In medie, raspunsuri
corecte pentru date de intrare alese aleator din spatiul datelor de intrare.
e Probabilitatea ca reteaua neuronald antrenatd sa genereze, in medie, raspunsuri

incorecte pentru date de intrare alese aleator din spatiul datelor de intrare.

Vom urma o idee prezentata in [4], pentru a studia prin prisma acestor elemente, capacitatea
de generalizare a unei retele neuronale .

Fie o multime de retele neuronale cu o arhitecturd data fixata, specificatd prin numarul de
straturi, numarul de neuroni din fiecare strat, conexiuni sinaptice, functii de activare. Fiecarei retele
neuronale ii corespunde o multime de tarii sinaptice, pe care o vom nota w. O multime de térii
sinaptice w poate fi interpretatd ca un punct in spatiul tariilor sinaptice posibile, spatiu pe care-1
vom numi tot spatiul tariilor sinaptice W.

Cand vom considera media in raport cu multimea retelelor neuronale, ea va
reprezenta media in raport cu spatiul tariilor sinaptice., medie calculatd in raport cu o densitate
probabilistica a priori, notata p(w).

Putem defini volumul disponibil V) al spatiului tariilor sinaptice:

Vy = [ dwp(w) (19)

Orice punct w din spatiul tariilor sinaptice, reprezintd o retea neuronald ce implementeaza
functia F(x,w), functie corespunzatoare valorilor generate de neuronii din stratul de iesire, cand la
stratul de intrare se prezintd vectorul de intrare x. Astfel spatiul tariilor sinaptice este partitionat
intr-o multime de submultimi disjuncte, cate una pentru fiecare functie f(x), pe care multimea de
retele neuronale o poate implementa.

Volumul subspatiului care implementeaza o functie particulara f; este:

Vo ()= dwp(w)- 0 .(w) (20)
unde: 6, (w) = {1’ F(X(; W) = f(=), cf:f)elx €X (21)

Fractia din spatiul tariilor sinaptice care implementeazd o functie data f, sau probabilitatea
de a obtine functia f, cand alegem tarii sinaptice aleatoare, conform distributiei p(w) este:

Ry( )= (22)

Insuméand in raport cu multimea tuturor functiilor, putem defini entropia informationala:

KNA
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So == Ry(f)-log, Ry(f) (23)
>

So reprezintd diversitatea functionald a arhitecturii retelelor neuronale. Daca Sy are o
valoare mare, avem nevoie de mai multa informatie pentru a specifica o functie particulara. In cazul
in care avem K functii posibile, de volum egal Vy(f), obtinem:

V.(f)= %, dacd f e celor K functii de volum egal (24)
0, altfel
Atunci obtinem: S, = log, K sau 2% = K (25)

Sa considerdm o paradigmd de Invatare supervizatd, in care se prezintd perechi de date
(x,,z;), ce corespund unei aplicatii tinta:
z, = f(x,),i=1...,N (26)
Presupunand ca reteaua neuronala a Invatat cu succes (functia eroare converge catre zero),

punctul w ce corespunde acestei retele neuronald, va fi localizat intr-un subspatiu al tariilor
sinaptice ce este compatibil cu datele de antrenament (x,,z;). Presupunand ca multimea de

antrenament contine N perechi de date (X,,z;), atunci volumul subspatiului rdmas este:
N
Vy = [awpw)[ ] 1(F.x,) (27)
i=1

F(Xiaw) = 7(Xi)
altfel

Vy va contine subspatiul corespunzator functiei tintd f, mpreund cu alte subspatii

1
unde: I(F,x,.):{ ’O (28)

corespunzatoare altor functii ce coincid cu 7 pe multimea datelor de antrenament. Evident, cu cat N

este mai mare, multimea functiilor ce coincid cu f pe multimea datelor de antrenament este mai
mica. De aici rezultd ca procesul de invatare poate fi privit ca un proces de reducere continud a
spatiului admisibil al tariilor sinaptice, adica:
VoV, 2V, 2.2V, (29)
Partea din spatiul tariilor sinaptice ce corespunde unei functii particulare f, se modifica dupa
invatarea a N exemple, de la Ry(f) la:

Vv (f)
Ry(f)=—2L (30)
VN
VM(f) reprezintd volumul spatiului tariilor sinaptice consistent atdt cu functia f cat si cu
exemplele de invatat (x,,z;). Avem:

V()= Ide(W)Hf(W)HI(F,X,-) = %(f)HI(F,X,») €2))

Entropia corespunzatoare este:

Sy ==Y R,(f)-log, R, (f) (32)
f

Sy reprezintd o masurd a numarului de functii implementabile, ce sunt compatibile cu
multimea de antrenament.
Sy - Sn.; reprezinta cantitatea de informatie obtinutd prin invétarea datei xy. Dacd invétarea
s-a desfagurat cu succes, obtinem:
Sv=3Sp-N (33)
In acest fel putem si ne gandim la o limiti a numarului necesar de date de antrenament
pentru a invata o aplicatie particulara f* sau putem sa ne gindim la estimarea eficientei invatarii [2].

N7
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Sa presupunem cd avem o multime de antrenament X;, X»,..., Xy aleasa aleator cu ajutorul
unei distributii P(x), fiecare x;.,i=1,...,N fiind independent.

Atunci, fiecare factor /(f,x;) este independent de ceilalti, ceea ce ne permite sd consideram
o medie in raport cu multimea tuturor datelor de antrenament. Vom folosi pentru aceastad medie
notatia <...>, obtinand:

<VN(f)>=%(f)'<Hl(f,X,~)>=Vo(f)'gN(f) (34)

Media este relativa la xy, xa,..., Xy, cu tariile sinaptice corespunzatoare P(X;), si avem:
g(f) = (I(f,x)) = Prob(f(x) = f(x)) (35)
reprezentand:
e probabilitatea ca o functie particulard f sa fie egala cu functia tinta ? in punctul x,
punct ales aleator de distributia P(x).
o 9(f) se numeste abilitatea de generalizare a lui f, specificand de fapt cat de mult f'se
apropie de 7 g(f) € [0,1] fiind independentd de multimea de antrenament.
Sa notdm cu Py(f) probabilitatea ca o functie f'sa implementeze, dupa invétarea a N exemple
de antrenament, functia tinta 7 Atunci:
Vy (f)> _{()

PN(f)=< v )

Aproximarea de mai sus se bazeaza pe ipoteza ca Vy nu variaza mult 1n raport cu o multime
de antrenament, deci V,, = <VN> pentru orice multime de antrenament.

(36)

Cu ajutorul formulei (36) putem calcula distributia abilitdtii de generalizare in raport cu
toate functiile posibile f:

Pu(@)=D Py(f)-8g—g(f) o D (M () 5(g—2(f) =
/ J

' (37)
=g" > V() 5(g—g(f) x g" p,(g)
f
Prin normalizare obtinem:
pr(g) =S P8 (38)

[(&)" po(g")-dg’
Deoarece distributia initiald p0,(g) =V, z Vo(f)-6(g—g(f)) depinde doar de arhitectura
s

retelei neuronale si de restrictia a priori incorporatd in p(w), rezultd din (2.62) urmatorul rezultat
remarcabil:
putem calcula distributia pp(W) dupid N exemple de antrenament, dacd cunoastem
distributia abilitatii de generalizare, inainte de faza de invitare.
Putem sa consideram si valoarea medie a abilitétii de generalizare:

1
|, " po()de

! N
J,¢"Pu(e)de

Reprezentand grafic G(N) in raport cu N-numarul de date de antrenament, obtinem curba de
invatare. G(N) poate fi folosit pentru a determina N in scopul invatarii retelei neuronale la un nivel
corespunzator de performanta.

Comportamentul asimptotic a lui pn(g) si deci si a lui G(N) cand N — oo, este determinat de

ege e,

GN) = [ g py(2)dg = (39)

KN
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(a). Exista o tranzitie abruptd de lungime & intre g = 1 si urmatoarea valoare g = gy, pentru care
oo(go). Atunci avem:

N
1-G(N)xe ° (40)
(b). Daca nu exista tranzitii abrupte la py(g), atunci avem:
1
1-G o — 41
(N)ec (41)

Aceste rezultate deosebite prezentate n acest paragraf au o mare importanta teoretica:

putem calcula media probabilistica a abilitatii de generalizare corectd, cand reteaua
neuronala a fost antrenat utilizind o multime de antrenament cu N elemente, daca
cunoastem in principiu o functie ce poate fi calculata inainte de inceperea fazei de
antrenare.

Practic 1nsd e dificil sa exploatdm aceste rezultate, deoarece un calcul analitic al distributiei
a priori py(g) este posibil doar pentru probleme simple.

De asemenea, utilizarea abilitatii de generalizare medie, n raport cu subspatiile spatiului
tariilor sinaptice, consistente cu multimea de antrenament, nu este foarte potrivitd, deoarece in
practicd legea de invitare poate favoriza unele subspatii in raport cu altele. In fond, o proceduri de
invatare reprezintd un drum in spatiul tariilor sinaptice, drum ce reprezinta ajustarea graduala a
tariilor sinaptice cu scopul minimizarii functiei eroare si nu o alegere aleatoare a tariilor sinaptice
restrictionate de multimea de antrenament. Densitatea probabilisticd initiald p(w) Incorporeaza intr-
un fel acest efect, dar nu in totalitate. De aceea vom incerca sa studiem abilitatea de generalizare in
cel mai rau caz si nu in cel mediu.

Pentru a simplifica analiza noastrd, vom considera problema clasificdrii binare, care
corespunde unei retele neuronale ce are 1n stratul de iesire un singur neuron, cu functia de activare
sgn(x).

Ne intereseaza g(f) pentru functia f pe care o implementeaza reteaua neuronald, pentru a sti
cat de bine aproximeaza functia f, functia tinta f.

Sé considerdm o multime de antrenament, constituitd din P perechi de puncte (Xx,,z,), i =
I,...N,cuz, = f(x,),i=1...,N.

Fie g, (F) numarul de multimi de antrenament, de dimensionalitate N, corect clasificate de

functia F(-,w), implementatd de reteaua neuronald. Scopul legii de invatare este de a ajusta tariile
sinaptice astfel incat sa maximizam g, (F), adica g, (£) = 1, In conditiile unei invatari perfecte.

Diferenta dintre g(f) si g,(f) este datoratd faptului cd g(f) reprezintd cat de bine
aproximeaza functia f functia tinta 7, in timp ce g, (f) reprezintd cat de bine aproximeaza functia f

functia tinta 7, ca o medie relativa la o multime de antrenament cu N elemente.
Cu alte cuvinte g, (f) reprezintd o aproximanta a lui g(f) , in conditii ideale:

gy (f) = &(f),N - o (42)
In practicd insa, avem relatia:
gy (F)>g(f) (43)

pentru functia F(-,w) obtinuta ca urmare a procesului de invatare.

Daca 1nsa vom considera o functie arbitrard f din multimea functiilor pe care reteaua
neuronald le poate implementa si o functie F(-,w) asociatd multimii de antrenament, vom fi in stare
sa estimam cat de “proastd” poata fi aproximarea functiei tinta 7 de catre f, in cel mai rau caz. Cum
acest “cel mai rau caz” este aplicabil oricarei functii / implementabile de reteaua neuronald,
obtinem rezultatul:

{NO
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&N
Prob(max|g, (/) —g(/)| > &) <4-m(2N)-e * (44)
unde m(N) este o functie ce depinde de dimensionalitatea N a multimii de antrenament, fiind numita
functie de crestere si reprezintd numarul maxim de functii diferite (binare in cazul nostru) care pot
fi implementate de reteaua neuronala pe baza unei multimi de antrenament cu N elemente.

Foarte importanta relatie (44) a fost obtinutd de Vapnik si Chervonenkis [4]. Membrul stang
al relatiei de mai sus reprezintd probabilitatea ca cea mai slaba aproximare sa depaseasca o limita &,
pentru orice functie implementabild de cétre reteaua neuronala.

Daca de exemplu = 0.01, vom sti cu probabilitatea de 99% ca g, (f) si g(f) sunt la distanta
de cel mult g una de alta, pentru orice functie f implementabild de reteaua neuronala.

Daca procesul de invatare s-a desfasurat cu succes, obtinand un rezultat perfect, adica
gy (F) =1, atunci vom sti cu o probabilitate foarte mare ca:

g(f,)>1-¢ (45)
Daci functia de activare este functia sgn(x) sau functia treaptd, avem un numir total de 2"
functii binare diferite, deci, In general:
m(N) < 2" (46)
Limitarile functiei de crestere pot fi generate si de arhitectura retelei neuronale. De exemplu
daca tariile sinaptice pot lua valori doar intr-o multime de valori cu & valori distincte, atunci:
m(N) < K" (47)
unde |w| reprezintd numarul total de conexiuni sinaptice ale retelei neuronale.
Bibliografie:
[1] Enachescu, C., (1995) Learning the Neural Networks from the Approximation Theory
Perspective. Intelligent Computer Communication ICC'95 Proceedings, 184-187, Technical
University of Cluj-Napoca, Romania.
[2]. Enachescu, C., Elemente de inteligentd artificiala. Calcul neuronal, Editura Universitatea
Tehnica Cluj-Napoca, 1997, 175 pag., 1997.
[3]. Enachescu, C., Fundamentelele retelelor neuronale, Editura Casa Cartii de Stiinta, ISBN 973-
9204-81-8, 200 pag., Cluj-Napoca, 1998.
[4] Haykin, S. (1994), Neural Networks. A Comprehensive Foundation. I[EEE Press, MacMillian,.

{1Nn

BDD-A23844 © 2005 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.159 (2026-01-08 15:58:53 UTC)


http://www.tcpdf.org

