
 DRUMURI OPTIME ÎN GRAFURI ORAR

ION COZAC

Abstract
We studied the optimum route problem in time-table graphs, in order to develop a web server supporting on-line queries.
This paper describes how to solve the following problems:
– separate train time-tables are given; how to build the entire time-table graph?
– how to use the maximum allowed distance as restriction criterion in the search process?
– how to split the time-table graph into two distinct graphs, to improve the efficiency?
Our study is based on the model designed by Schulz, Wagner and Zaroliagis.

Keywords: time-table graph, near optimum path, earliest arrival, maximum allowed distance

1. Datele iniţiale ale problemei

 O reţea feroviară este modelată cu ajutorul unui graf simetric ponderat

G = (X, U, d):

– X este o mulţime finită şi nevidă de noduri, asociată cu mulţimea staţiilor reţelei;

– U este o mulţime de arce care indică legături directe între staţii: dacă (x,y) ∈ U atunci între x şi

y nu există alte staţii;

– d este o funcţie distanţă simetrică, d : U → N*; d(x,y) = d(y,x) pentru orice (x,y) ∈ U.

 Prima problemă care trebuie rezolvată este cea a introducerii cît mai comode a datelor

despre un orar nou. Pentru fiecare tren se precizează: care este traseul acestuia, prin ce staţii

trece, ora sosirii şi plecării pentru fiecare staţie.

 Pentru un tren oarecare se introduc staţia iniţială de plecare şi staţia finală de sosire. În acest

moment s-ar putea determina un drum de distanţă minimă între cele două staţii. Dar nu orice

tren parcurge traseul de distanţă minimă dintre cele două staţii. Astfel că, dacă traseul trenului

diferă de cel avînd distanţa minimă, trebuie să precizăm un nod intermediar, sau poate chiar

două. În continuare se determină un traseu de distanţă minimă care să treacă prin toate nodurile

în ordinea dată; în acest scop poate fi folosit algoritmul Dijkstra [1].

 Avînd toate staţiile de pe parcursul unui tren, se pot preciza pentru fiecare staţie ora sosirii şi

ora plecării. Staţia iniţială de plecare nu are asociată o oră de sosire, şi staţia finală de sosire nu

are asociată o oră de plecare. De asemenea, este posibil ca o staţie intermediară să nu aibă

asociate aceste informaţii, dacă trenul nu are oprire în staţia respectivă.

674

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

2. Modelare cu ajutorul unui graf expandat

Există modelări ale problemei mersului trenurilor disponibile pe Internet. Prezentăm în

continuare un astfel de model (cf Schulz et al [4]), simplificat şi completat pentru a modela cît

mai bine unele particularităţi ale reţelei feroviare din România. Să presupunem că avem trei

staţii: Sa, Sb şi Sc, şi trei trenuri cu următorul program de circulaţie:

– T1: (Sa, 8:00) – (Sb, 8:15, 8:20) – (Sc, 8:30);

– T2: (Sb, 12:00) – (Sc, 12:45, 12:50) – (Sa, 13:10);

– T3: (Sc, 14:00) – (Sa, 14:15, 14:20) – (Sb, 14:35).

 Pentru fiecare staţie, şi pentru fiecare moment de sosire şi plecare, se defineşte cîte un nod

în graful expandat. Astfel vom avea următoarele noduri:

– cele asociate staţiei Sa: n1(T1,8:00), n2(T2,13:10), n3(T3,14:15), n4(T3,14:20);

– cele asociate staţiei Sb: n5(T1,8:15), n6(T1,8:20), n7(T2,12:00), n8(T3,14:35);

– cele asociate staţiei Sc: n9(T1,8:30), n10(T2,12:45), n11(T2,12:50), n12(T3,14:00).

 Se definesc arce în graful expandat astfel:

– arce care indică momente succesive din ruta unui tren: (n1,n5), (n5,n6), (n6,n9), (n7,n10), (n10,n11),

(n11,n2), (n12,n3), (n3,n4), (n4,n8);

– arce care indică legături cu alte trenuri: (n8,n7), (n8,n6), (n5,n7), (n2,n1), (n2,n4), (n3,n1), (n9,n11),

(n9,n12), (n10,n12).

În a doua listă se includ arcele care se referă la aceeaşi staţie şi unesc un vîrf de sosire

corespunzînd unui tren cu un vîrf de plecare corespunzînd altui tren.

Un exemplu de graf orar

Uneori este necesar să introducem legături suplimentare în graful expandat, pentru

a indica faptul că un tren de legătură trebuie luat dintr-o staţie vecină. Exemple: (Ploiesti

675

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

Vest, Ploiesti Sud), (Bucuresti Nord, Bucuresti Basarab). În aceste situaţii legăturile trebuie să

ţină seama de timpul necesar pentru a ajunge dintr-o staţie în cealaltă cu un alt mijloc

de transport (de exemplu autobuz). Aceste arce suplimentare vor fi definite astfel:

– nodul iniţial al arcului este asociat unui moment de sosire, şi nodul final unui

moment de plecare;

– se vor avea în vedere acele noduri care corespund unui interval de timp mai mare

decît cel necesar pentru a parcurge distanţa dintre cele două staţii.

Graful expandat G’ = (X’, U’, time, dist) asociat mersului trenurilor este un graf

orientat unde:

– X’ este mulţimea de noduri definite cum s-a arătat mai sus; un nod x’ ∈ X’ este

un triplet (s,t,h) cu semnificaţia: s – staţie, t – tren, h – ora plecării sau sosirii;

– U’ este mulţimea de arce definite cum s-a arătat mai sus;

– time : E’ → N ; time (x’,y’) = (t(y’) − t(x’) + 1440) mod 1440

– dist : E’ → N ; dist (x’,y’) = distanţa minimă de la s(x’) la s(y’)

t(x’) este componenta t a nodului x’, s(x’) este componenta s a nodului x’.

Distanţa minimă este determinată în graful G al reţelei feroviare. Valorile funcţiilor

time şi dist se calculează o singură dată, în faza de preprocesare.

 Fiind date două staţii pl şi so, trebuie să se determine mai multe trasee optime (ca şi

timp de călătorie) de la pl la so. Trebuie să precizăm mai exact ce înseamnă traseu

optim. Considerînd staţia pl şi momentul de plecare h, să se determine un traseu care

ne permite să ajungem în cel mai scurt timp în staţia so. Dacă vom considera diferite

ore de plecare, este posibil să avem trasee diferite cu durate diferite de călătorie, toate

fiind optime conform precizării de mai sus. În literatura de specialitate se foloseşte

termenul the earliest arrival problem (Pyrga et al [4]).

 Criteriul de optim este relativ la momentul plecării. Dar dacă se identifică două

trasee diferite, cu momente diferite de plecare, şi momentul sosirii coincide, va fi luat

în considerare doar acel traseu care are timpul total de călătorie minim.

 Pentru a determina traseul optim se utilizează algoritmul Dijkstra cu cîteva

modificări.

676

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

 Se determină o mulţime S’ ⊂ X’ asociată staţiei pl care se referă doar la momente

de plecare. Se determină de asemenea o mulţime T’ ⊂ X’ asociată staţiei so care se

referă doar la momente de sosire. Pentru fiecare nod s’ ∈ S’ se determină un traseu

optim de la s’ la primul nod t’ care este depistat în T’. Pentru două noduri consecutive

n1(s1,t1,h1) şi n2(s2,t2,h2) timpul se determină astfel:

(1440+h2–h1) mod 1440

dacă momentele de timp sînt date în minute în intervalul [0,1439].

Autorii citaţi mai sus propun ca în a doua listă de arce să se includă acele arce care

se referă la aceeaşi staţie, şi care unesc două momente consecutive de timp, indiferent

de tipul acestora (plecare sau sosire), la care se adaugă un arc care uneşte ultimul

moment de timp cu primul, pentru a da posibilitatea de a obţine legături la momentul

trecerii de la o zi la alta.

 Avantajul acestei abordări este obţinerea unui număr redus de arce în graful orar.

Dezavantajul apare la gestionarea dificilă a situaţiilor în care e nevoie să se schimbe un

tren, dacă se urmăreşte în acelaşi timp şi un număr minim de schimbări.

 Deoarece modelul nostru cere să se construiască legături între orice vîrf de sosire şi

orice vîrf de plecare, numărul total numărul total de arce este de cîteva ori mai mare.

În schimb se gestionează mult mai uşor situaţiile în care e nevoie să se schimbe un

tren.

 Verificări suplimentare permit reducea numărului de arce, selectînd doar staţiile

unde astfel de schimbări sînt într-adevăr necesare. De exemplu, arcul (n5,n7) nu e

necesar deoarece se poate ajunge la staţia Sc cu trenul T1 – direct, pe cînd folosirea

acestui arc ar presupune schimbarea trenului. Un alt exemplu: avem un tren pe ruta Sa

→ Sb → Sc, dacă am avea un tren pe ruta Sc → Sb → Sa, nu s-ar justifica o schimbare

între cele două trenuri în staţia Sb.

 Este necesară o selecţie foarte atentă a arcelor care vor defini graful orar. De

rezultatul acestei selecţii va depinde într-o măsură foarte mare atît calitatea

informaţiilor furnizate de programul de căutare, cît şi eficienţa acestuia. Aşadar, etapa

de preprocesare a datelor este foarte importantă în astfel de situaţii.

677

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

3. Algoritm de căutare accelerată

 Deoarece graful orar are un număr foarte mare de vîrfuri şi arce, unii autori

recomandă (Schulz et al [3]) construirea unor grafuri pe mai multe nivele, căutarea

făcîndu-se mai întîi în graful cel mai mic, după aceea în graful de pe nivelul următor şi

aşa mai departe. În graful de pe un nivel mai mare se face căutare restrictivă, doar

pentru vîrfurile aflate în vecinătatea celor identificate la nivelul anterior.

 Propunem în continuare un criteriu mai simplu de restricţionare a căutărilor, care

nu necesită memorie suplimentară. Iniţial se determină distanţa minimă de la staţia

finală la fiecare din celelalte staţii, şi se reţin doar staţiile care se află la o distanţă care

este cu cel mult 50% (de exemplu) faţă de distanţa minimă. Această selecţie se face

foarte repede, deoarece graful reţelei feroviare este de zeci de ori mai mic faţă de graful

orar.

 În continuare, pentru fiecare vîrf extras (algoritmul Dijkstra modificat) căutarea

continuă numai dacă distanţa deja parcursă plus distanţa minimă (rămasă de parcurs,

determinată anterior) nu depăşeşte limita stabilită.

 Fie pl staţia de plecare şi so staţia de sosire. Trebuie să determinăm mai multe rute

optime posibile de la pl la so, criteriul de optim fiind timpul total de călătorie. Pentru a

rezolva această problemă folosim o variantă a algoritmului Dijkstra. Selectăm o

submulţime S’ ⊂ X’ asociată staţiei pl şi orice nod este de plecare. Selectăm de

asemenea o submulţime A’ ⊂ V’ asociată staţiei so şi orice nod este de sosire. Pentru

fiecare nod s’ ∈ S’ determinăm o rută optimă de la s’ la primul nod x’ întîlnit în A’.

 Deoarece graful orar este destul de mare sînt necesare tehnici de accelerare a

căutării. Propunem în continuare un criteriu care restrînge căutările fără a fi nevoie de

memorie suplimentară. Mai întîi determinăm distanţa minimă de la pl la so, pe care o

înmulţim cu un factor f > 1; obţinem astfel md, distanţa maximă admisă. De exemplu,

dacă acceptăm o rută care acoperă o distanţă cu 50% mai mare decît distanţa minimă,

atunci f = 1,50.

Algoritm MarkStations (variantă Dijkstra);

678

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

Input. G = (X, U, d) graful reţelei feroviare;

 pl, staţia de plecare; so, staţia de sosire;

 f, factor de deviere maximă (f > 1).

Output. D, lista distanţelor de la so la toate celelalte staţii;

 md, distanţa maximă admisă.

begin

 for (each x ∈ X) do D[x] := ∞;

 D[so] := 0; md := 0; Z := {so};

 while (Z ≠ ∅) do begin

 x := ExtractMin(Z); // x are D[x] distanţa minimă dintre toate nodurile din Z

 if (x = pl) then md := D[x] ∗ f;

 if (md > 0) and (D[x] > md) then break;

 for (each y ∈ Succ(x)) do begin // pentru fiecare y, succesor al lui x

 if (y ∉ Z) then Z := Z {y}; U

 w := D[x] + d(x,y);

 if (D[y] > w) then D[y] := w;

 end;

 end;

end (algoritm).

 Acum sîntem pregătiţi să determinăm o rută de la un nod oarecare din S’ la primul

nod întîlnit din A’.

Algoritm NearOptimumRoute (variantă Dijkstra);

Input. G’ = (X’, U’, time, dist) graful orar;

 s’, nod de plecare; A’, set de sosire;

 D, lista distanţelor, determinată anterior;

 md, distanţa maximă admisă, determinată anterior.

Output. R, ruta găsită (lista nodurilor).

begin

679

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

 for (each x’ ∈ X’) do begin

 P[x’] := ∞; F[x’] := ∞; T[x’] := ∞;

 end;

 F[s’] := 0; T[s’] := t(s’); Z := {s’}; P[s’] := s’;

 while (Z ≠ ∅) do begin

 x’ := ExtractMin(Z); // x’ are costul minim dintre toate nodurile din Z

 if (x’ ∈ A’) then break;

 for (each y’ ∈ Succ(x’)) do begin // pentru fiecare y’, succesor al lui x’

 if (y’ ∉ Z) then Z := Z {y’}; U

 wd := F[x’] + dist(x’,y’);

 if (D[s(y’)]+wd > md) then continue; // ignorăm rute foarte lungi prin y’

 wt := T[x’] + time(x’,y’);

 if (T(x’,y’),F(x’,y’)) > (wt,wd) then begin // comparare lexicografică

 T[y’] := wt; F[y’] := wd; P[y’] := x’;

 end;

 end;

 end;

 k := 0; R[0] := x’; // x’ este nodul final

 while (x’ ≠ d’) do begin

 x’ := P[x’]; k := k + 1; R[k] := x’;

 end; // Lista R va fi parcursă ulterior în ordine inversă

end (algoritm).

 Algoritmul este numit NearOptimumRoute deoarece e posibil ca unele rute să nu fie

neapărat optime (din punctul de vedere al timpului de călătorie), deoarece unele rute

prea lungi (care dau o distanţă mai mare decît md) sînt abandonate, chiar dacă ar putea

da timpi de călătorie mai buni. Pare curios, dar România este ţara tuturor

posibilităţilor: există rute pe distanţe scurte unde circulă puţine trenuri, şi alte rute pe

distanţe mai lungi dar mai circulate.

680

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

 P se foloseşte pentru memora informaţii care vor fi folosite pentru a reconstitui o

rută de la d’ la nodul final. O rută de la d’ la y’ foloseşte x’ ca nod precedent, deci P[y’]

= x’.

T se foloseşte pentru a memora, pentru fiecare nod y’, timpul scurs de la s(d’) la

s(y’).

F se foloseşte pentru a memora, pentru fiecare nod y’, distanţa parcursă de la s(d’)

la s(y’). Această listă se foloseşte pentru a verifica dacă distanţa estimată de la pl la so

depăşeşte sau nu distanţa maximă admisă:

D[s(y’)] este distanţa minimă de la s(y’) la so;

wd este distanţa parcursă de la pl la s(y’); wd ≥ distanţa minimă de la pl la s(y’).

 Criteriul de optim este dat de cuplul (T, F) astfel: în primul rînd contează timpul de

călătorie minim, iar în caz de egalitate distanţa minimă.

4. Implementare

 Algoritmii descrişi mai sus au fost incluşi într-o aplicaţie web care poate fi găsită la

adresa http://193.226.19.29:1026; pentru implementarea algoritmilor de drum optim

am folosit cozi de prioritate (Johnson [2]).

 Aplicaţia este scrisă în limbajul C şi compilată cu GNU C version 4.1.0 . Sistemul

de calcul are următoarele caracteristici: procesor Intel Celeron la 768 MHz, 128 Mb

RAM memorie, şi rulează un sistem de operare Linux Fedora.

Graful reţelei CFR are 1964 staţii şi 4020 arce. Graful orar are 47840 noduri şi

224810 arce (1-Jan-2007, www.infofer.ro).

Pentru a evalua performanţa serverului web am cerut să se determine rutele

indicate mai jos. Tabelul de mai jos indică: staţia de plecare, staţia de sosire, distanţa

minimă, numărul nodurilor de plecare (numărul de trenuri care pleacă din staţia de

plecare), timpul total de răspuns, timpul mediu de răspuns.

 În general, timpul total de răspuns depinde de numărul nodurilor de plecare, de

distanţa parcursă de la plecare la sosire, şi de cît de repede poate serverul să găsească o

direcţie corectă spre staţia de sosire. Tocmai de aceea am introdus ca şi criteriu de

restricţie distanţa maximă admisă: rutele prea lungi sînt abandonate.

681

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

Evaluarea performanţelor serverului web

Rute Timp de răspuns

Bucuresti Nord → Tirgu Mures

448 km, 105 noduri de plecare

0,479 secunde (timp total)

0,004562 secunde (medie)

Tirgu Mures → Bucuresti Nord

448 km, 24 noduri de plecare

0,120 secunde (timp total)

0,005 secunde (medie)

Bucuresti Nord → Timisoara Nord

531 km, 105 noduri de plecare

0,520 secunde (timp total)

0,004952 secunde (medie)

Timisoara Nord → Bucuresti Nord

531 km, 76 noduri de plecare

0,328 secunde (timp total)

0,004316 secunde (medie)

Tirgu Mures → Dej Calatori

150 km, 24 noduri de plecare

0,098 secunde (timp total)

0,004083 secunde (medie)

Dej Calatori → Tirgu Mures

150 km, 54 noduri de plecare

0,191 secunde (timp total)

0,003537 secunde (medie)

Dej Calatori → Cluj Napoca

59 km, 54 noduri de plecare

0,186 secunde (timp total)

0,003444 secunde (medie)

Cluj Napoca → Dej Calatori

59 km, 62 noduri de plecare

0,220 secunde (timp total)

0,003548 secunde (medie)

 BIBLIOGRAFIE:

[1] E. Dijkstra – A note on two problems in connection with networks / Numerische
Mathematik 1, 1959, pp 169-271

[2] D. B. Johnson – A note on Dijkstra’s shortest path algorithm / Journal of ACM 20,
1973, pp 385-388

[3] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, Christos Zaroliagis – Toward
realistic modeling of time-table information through the time-dependent approach / Electronic
Notes on Theoretical Computer Science 92 no 1, 2003

[4] Frank Schulz, Dorothea Wagner, Christos Zaroliagis – Using multilevel graph for
time-table information on railway systems / Editors: D. Mount and C. Steiri, ALENEX
2002, LNCS 2409, pp 43-59.

682

Provided by Diacronia.ro for IP 216.73.216.187 (2026-01-07 07:23:44 UTC)
BDD-A23785 © 2007 Editura Universităţii „Petru Maior”

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

