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Let X1 and X2 be two real or complex Hilbert spaces, respectively. We consider
the linear and continuous operator T : X1 → X2, where T ∗ : X2 → X1 is the adjoint
operator of T. Let us take the equation T (x) = b, where x ∈ X1 is the unknown and
b ∈ X2 is a fixed element.

Theorem 1. If x∗ ∈ X1 verifies the condition (T (x∗)−b) ∈ Ker(T ∗) then ‖T (x∗)−b‖ ≤
‖T (x)− b‖ for all x ∈ X1.

Proof. We have the following:

‖b− T (x)‖2 = ‖b− T (x∗) + T (x∗ − x)‖2 =

= (b− T (x∗) + T (x∗ − x), b− T (x∗) + T (x∗ − x)) =

= (b− T (x∗), b− T (x∗)) + (b− T (x∗), T (x∗ − x)) +

+(T (x∗ − x), b− T (x∗)) + (T (x∗ − x), T (x∗ − x)) =

= ‖b− T (x∗)‖2 + (T ∗(b− T (x∗)), x∗ − x) +

(x∗ − x, T ∗(b− T (x∗))) + ‖T (x∗ − x)‖2 =

= ‖b− T (x∗)‖2 + ‖T (x∗ − x)‖2 ≥ ‖b− T (x∗)‖2.

Next we give some applications.

Application 1. We consider the real, finite, overdetermined linear system:





a01x1 + a02x2 + . . . + a0nxn = b0

a11x1 + a12x2 + . . . + a1nxn = b1
...
am1x1 + am2x2 + . . . + amnxn = bm
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where m > n and aij, bi ∈ R for all i = 0,m and j = 1, n. Let A = (aij)i=0,m
j=1,n

be the

matrix of the real linear system and b = (bi)i=0,m is the constant term. Then we obtain
the following linear and continuous operator T : Rn → Rm+1, and T (x) = A·x, for every
x = (x1, x2, . . . , xn)T ∈ Rn. So the adjoint operator T ∗ has the matrix AT , which is the
transpose of the matrix A. Using our theorem, from the condition (T (x∗)−b) ∈ Ker(T ∗)
we obtain T ∗(T (x∗)− b) = 0, i.e. T ∗(T (x∗)) = T ∗(b), which has the equivalent matrix
form AT · A · x∗ = AT · b. So from our theorem we reobtain the following well known
result: if AT ·A · x∗ = AT · b then ‖A · x∗ − b‖ ≤ ‖A · x− b‖ for all x ∈ Rn (see [1], [2]
or [3]).

Application 2. We consider the real, infinite, overdetermined linear system:





a01x1 + a02x2 + . . . + a0nxn = b0

a11x1 + a12x2 + . . . + a1nxn = b1
...
am1x1 + am2x2 + . . . + amnxn = bm
...

where aij, bi ∈ R for all i ∈ N and j = 1, n. Let aj = (aij)i∈N ∈ l2(R) and b =
(bi)i∈N ∈ l2(R), so A = (a1a2 . . . an) is the matrix of the infinite linear system and b
is the constant term. Then we obtain the following linear and continuous operator
T : Rn → l2(R), T (x) = A · x, for every x = (x1, x2, . . . , xn)T ∈ Rn. So the adjoint
operator T ∗ has the matrix AT , which is the transpose of the matrix A. Using our
theorem, from the condition (T (x∗) − b) ∈ Ker(T ∗) we obtain T ∗(T (x∗) − b) = 0,
i.e. T ∗(T (x∗)) = T ∗(b), which has the equivalent matrix form AT · A · x∗ = AT · b.
So from our theorem we reobtain the following result: if AT · A · x∗ = AT · b then
‖A · x∗ − b‖ ≤ ‖A · b− b‖ for all x ∈ Rn (see [4]).

Application 3. We consider the complex, finite, overdetermined linear system:





a01x1 + a02x2 + . . . + a0nxn = b0

a11x1 + a12x2 + . . . + a1nxn = b1
...
am1x1 + am2x2 + . . . + amnxn = bm

where m > n and aij, bi ∈ C for all i = 0,m and j = 1, n. Let A = (aij)i=0,m
j=1,n

be

the matrix of the complex linear system and b = (bi)i=0,m is the constant term. Then
we obtain the following linear and continuous operator T : Cn → Cm+1, T (x) =
A · x, for every x = (x1, x2, . . . , xn)T ∈ Cn. So the adjoint operator T ∗ has the matrix

A
T
, which is the transpose of the matrix A and taking the complex conjugate for all

elements of AT . Using our theorem, from the condition (T (x∗) − b) ∈ Ker(T ∗) we
obtain T ∗(T (x∗) − b) = 0, i.e. T ∗(T (x∗)) = T ∗(b), which has the equivalent matrix

from A
T · A · x∗ = A

T · b. It is immediately that this last relation is the same with
AT ·A · x∗ = AT · b. So from our theorem we reobtain the following well known result:
if AT ·A · x∗ = AT · b then ‖A · x∗ − b‖ ≤ ‖A · x− b‖ for all x ∈ Cn (see [1], [2] or [3]).
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Application 4. We consider the complex, finite, overdetermined linear system:





a01x1 + a02x2 + . . . + a0nxn = b0

a11x1 + a12x2 + . . . + a1nxn = b1
...
am1x1 + am2x2 + . . . + amnxn = bm
...

where aij, bi ∈ C for all i ∈ N and j = 1, n. Let aj = (aij)i∈N ∈ l2(C) and b =
(bi)i∈N ∈ l2(C), so A = (a1a2 . . . an) is the matrix of the infinite linear system and b
is the constant term. Then we obtain the following linear and continuous operator
T : Cn → l2(C), T (x) = A · x, for every x = (x1, x2, . . . , xn)T ∈ Cn. So the adjoint

operator T ∗ has the matrix A
T
, which is the transpose of the matrix A and taking

the complex conjugate for all elements of AT . Using our theorem, from the condition
(T (x∗)− b) ∈ Ker(T ∗) we obtain T ∗(T (x∗)− b) = 0, i.e. T ∗(T (x∗)) = T ∗(b), which has

the equivalent matrix from A
T ·A · x∗ = A

T · b. It is immediately that this last relation
is the same with AT · A · x∗ = AT · b. So from our theorem we obtain the following
result: if AT · A · x∗ = AT · b then ‖A · x∗ − b‖ ≤ ‖A · x− b‖ for all x ∈ CN . (see [5]).
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