

The operatorial form of the overdetermined infinite linear systems

phd. Béla Finta

associate professor

"Petru Maior" University of Tg. Mures, Romania

Proceedings of the European Integration between Tradition and Modernity

"Petru Maior" University of Târgu-Mureş

Oktober, 22-23, 2009

Let X_1 and X_2 be two real or complex Hilbert spaces, respectively. We consider the linear and continuous operator $T : X_1 \rightarrow X_2$, where $T^* : X_2 \rightarrow X_1$ is the adjoint operator of T . Let us take the equation $T(x) = b$, where $x \in X_1$ is the unknown and $b \in X_2$ is a fixed element.

Theorem 1. *If $x^* \in X_1$ verifies the condition $(T(x^*) - b) \in \text{Ker}(T^*)$ then $\|T(x^*) - b\| \leq \|T(x) - b\|$ for all $x \in X_1$.*

Proof. We have the following:

$$\begin{aligned} \|b - T(x)\|^2 &= \|b - T(x^*) + T(x^* - x)\|^2 = \\ &= (b - T(x^*) + T(x^* - x), b - T(x^*) + T(x^* - x)) = \\ &= (b - T(x^*), b - T(x^*)) + (b - T(x^*), T(x^* - x)) + \\ &\quad + (T(x^* - x), b - T(x^*)) + (T(x^* - x), T(x^* - x)) = \\ &= \|b - T(x^*)\|^2 + (T^*(b - T(x^*)), x^* - x) + \\ &\quad (x^* - x, T^*(b - T(x^*))) + \|T(x^* - x)\|^2 = \\ &= \|b - T(x^*)\|^2 + \|T(x^* - x)\|^2 \geq \|b - T(x^*)\|^2. \end{aligned}$$

□

Next we give some applications.

Application 1. We consider the real, finite, overdetermined linear system:

$$\left\{ \begin{array}{l} a_{01}x_1 + a_{02}x_2 + \dots + a_{0n}x_n = b_0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{array} \right.$$

where $m > n$ and $a_{ij}, b_i \in \mathbb{R}$ for all $i = \overline{0, m}$ and $j = \overline{1, n}$. Let $A = (a_{ij})_{\substack{i=\overline{0,m} \\ j=\overline{1,n}}}$ be the matrix of the real linear system and $b = (b_i)_{i=\overline{0,m}}$ is the constant term. Then we obtain the following linear and continuous operator $T : \mathbb{R}^n \rightarrow \mathbb{R}^{m+1}$, and $T(x) = A \cdot x$, for every $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$. So the adjoint operator T^* has the matrix A^T , which is the transpose of the matrix A . Using our theorem, from the condition $(T(x^*) - b) \in \text{Ker}(T^*)$ we obtain $T^*(T(x^*) - b) = 0$, i.e. $T^*(T(x^*)) = T^*(b)$, which has the equivalent matrix form $A^T \cdot A \cdot x^* = A^T \cdot b$. So from our theorem we reobtain the following well known result: if $A^T \cdot A \cdot x^* = A^T \cdot b$ then $\|A \cdot x^* - b\| \leq \|A \cdot x - b\|$ for all $x \in \mathbb{R}^n$ (see [1], [2] or [3]).

Application 2. We consider the real, infinite, overdetermined linear system:

$$\left\{ \begin{array}{l} a_{01}x_1 + a_{02}x_2 + \dots + a_{0n}x_n = b_0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ \vdots \end{array} \right.$$

where $a_{ij}, b_i \in \mathbb{R}$ for all $i \in \mathbb{N}$ and $j = \overline{1, n}$. Let $a_j = (a_{ij})_{i \in \mathbb{N}} \in l^2(\mathbb{R})$ and $b = (b_i)_{i \in \mathbb{N}} \in l^2(\mathbb{R})$, so $A = (a_1 a_2 \dots a_n)$ is the matrix of the infinite linear system and b is the constant term. Then we obtain the following linear and continuous operator $T : \mathbb{R}^n \rightarrow l^2(\mathbb{R})$, $T(x) = A \cdot x$, for every $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$. So the adjoint operator T^* has the matrix A^T , which is the transpose of the matrix A . Using our theorem, from the condition $(T(x^*) - b) \in \text{Ker}(T^*)$ we obtain $T^*(T(x^*) - b) = 0$, i.e. $T^*(T(x^*)) = T^*(b)$, which has the equivalent matrix form $A^T \cdot A \cdot x^* = A^T \cdot b$. So from our theorem we reobtain the following result: if $A^T \cdot A \cdot x^* = A^T \cdot b$ then $\|A \cdot x^* - b\| \leq \|A \cdot b - b\|$ for all $x \in \mathbb{R}^n$ (see [4]).

Application 3. We consider the complex, finite, overdetermined linear system:

$$\left\{ \begin{array}{l} a_{01}x_1 + a_{02}x_2 + \dots + a_{0n}x_n = b_0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{array} \right.$$

where $m > n$ and $a_{ij}, b_i \in \mathbb{C}$ for all $i = \overline{0, m}$ and $j = \overline{1, n}$. Let $A = (a_{ij})_{\substack{i=\overline{0,m} \\ j=\overline{1,n}}}$ be the matrix of the complex linear system and $b = (b_i)_{i=\overline{0,m}}$ is the constant term. Then we obtain the following linear and continuous operator $T : \mathbb{C}^n \rightarrow \mathbb{C}^{m+1}$, $T(x) = A \cdot x$, for every $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{C}^n$. So the adjoint operator T^* has the matrix \overline{A}^T , which is the transpose of the matrix A and taking the complex conjugate for all elements of A^T . Using our theorem, from the condition $(T(x^*) - b) \in \text{Ker}(T^*)$ we obtain $T^*(T(x^*) - b) = 0$, i.e. $T^*(T(x^*)) = T^*(b)$, which has the equivalent matrix from $\overline{A}^T \cdot A \cdot x^* = \overline{A}^T \cdot b$. It is immediately that this last relation is the same with $A^T \cdot \overline{A} \cdot x^* = A^T \cdot \overline{b}$. So from our theorem we reobtain the following well known result: if $A^T \cdot \overline{A} \cdot x^* = A^T \cdot \overline{b}$ then $\|A \cdot x^* - b\| \leq \|A \cdot x - b\|$ for all $x \in \mathbb{C}^n$ (see [1], [2] or [3]).

Application 4. We consider the complex, finite, overdetermined linear system:

$$\left\{ \begin{array}{l} a_{01}x_1 + a_{02}x_2 + \dots + a_{0n}x_n = b_0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ \vdots \end{array} \right.$$

where $a_{ij}, b_i \in \mathbb{C}$ for all $i \in \mathbb{N}$ and $j = \overline{1, n}$. Let $a_j = (a_{ij})_{i \in \mathbb{N}} \in l^2(\mathbb{C})$ and $b = (b_i)_{i \in \mathbb{N}} \in l^2(\mathbb{C})$, so $A = (a_1 a_2 \dots a_n)$ is the matrix of the infinite linear system and b is the constant term. Then we obtain the following linear and continuous operator $T : \mathbb{C}^n \rightarrow l^2(\mathbb{C})$, $T(x) = A \cdot x$, for every $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{C}^n$. So the adjoint operator T^* has the matrix \overline{A}^T , which is the transpose of the matrix A and taking the complex conjugate for all elements of A^T . Using our theorem, from the condition $(T(x^*) - b) \in \text{Ker}(T^*)$ we obtain $T^*(T(x^*) - b) = 0$, i.e. $T^*(T(x^*)) = T^*(b)$, which has the equivalent matrix from $\overline{A}^T \cdot A \cdot x^* = \overline{A}^T \cdot b$. It is immediately that this last relation is the same with $A^T \cdot \overline{A \cdot x^*} = A^T \cdot \overline{b}$. So from our theorem we obtain the following result: if $A^T \cdot \overline{A \cdot x^*} = A^T \cdot \overline{b}$ then $\|A \cdot x^* - b\| \leq \|A \cdot x - b\|$ for all $x \in \mathbb{C}^N$. (see [5]).

References

- [1] Singiresu S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, Upper Saddle River, New Jersey, 2002.
- [2] Anders C. Hansen, Infinite Dimensional Numerical Linear Algebra; Theory and Applications. [http://www.damtp.cam.ac.uk/user/na/people/Anders/](http://www.damtp.cam.ac.uk/user/na/people/Anders/Applied3.pdf) Applied3.pdf.
- [3] Béla Finta, Numerical Analysis, Publishing House of the "Petru Maior" University, Tg. Mureş, Romania, 2004.
- [4] Béla Finta, Overdetermined Infinite Linear Systems, ICNAAM 2009, Greece (submitted).
- [5] Béla Finta, Complex Overdetermined Infinite Linear Systems, (to prepair).

Béla Finta

Department of Mathematics, "Petru Maior" University Tg.Mureş
Nicolae Iorga street nr.1, 540088, Romania
e-mail: fintab@upm.ro