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Abstract: In this article we study a convection-diffusion problem in the one
dimensional case from the point of view of the effect of an iterative numerical method on the
components of the error. We propose here a new definition for the smoothing factor, and a
new way to split the frequency spectrum used to describe the error term in the local Fourier
analysis of the multigrid method.
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Introduction

For the study of iterative numerical methods, one of the most efficient and frequently
used methods is the local Fourier analysis (LFA). This method is used in order to compute the
amplification factor, the smoothing factor, the error reduction factor and the convergence
factor for a numerical method. The computing of the smoothing factor is very important
because it's analysis allows designing efficient components for the multigrid method, being
well known that this method has to be adapted to each type of problem that has to be solved.
The LFA, first introduced by A. Brandt in [3], then used in [1], [2] has become a widely used
method [4], [11], [12] on a large variety of problems.
The novelty in this paper is the definition that we propose for the smoothing factor- used for
both the design and analysis of the multigrid method, and the new way to split the frequency
spectrum into high and low frequencies for the one dimensional case.

The model problem used here is the mathematical representation of the stationary
convection-diffusion process:

—au"(x)+au'(x)=f(x), xeQ=(01)
{ u(x)=0, xe ={01},

where u is the concentration of the substance, f is a possible perturbation term for the
concentration, due for example to chemical reactions, ¢ is the diffusion coefficient and a- the
convection coefficient.

In order to numerically solve a differential equation, it is discretized, using for
example the finite differences method of second order. This process leads to the following
system:

1)

4ev, —(2e —ah v, = hf,,
—(2e+ah v, +4ev, — (2e—ah v, =h7f,, j=2..n -1 (2
—(2z+ah v, , +4ev, =T
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As the exact solution U of the differential equation is also a solution of the system (2),
the error € =U—V will satisfy the system:

4ce,— (2 —ah e, =0,,
—(2z+ah)e,, +4ce,—(2s—ah Je;,, =0, j=2,.,n 1. (3)
—(2z+ah e, , +4ze, =0,
If the system (3) is solved using:

e the Gauss-Seidel method, then the iterate after m steps can be computed from the
relation:

— (2 +ah )" +4cel" =(2z—ah, )™ m>1j=2..,n-L (4
e the Pondered Jacobi method, the iterate at the step m is obtained from the relations:
4ce’ =(2z+ah "V +(2c—ah, e (5)
and
el =ae”+(1- )™ (6)
where @ e (0,1),m>1, j=1,..,n, —1 and e!™ is the error value after m iterations in the point
X, j=0,...,n; .
As the error is a vector with n, components, the value of it in a point x; can be

expanded in a discrete Fourier series [9], for example wusing the base:

{eitk |tk :ka, j.k :0,1,...,n,}, with the formula:
+n,

el = ¢, j=0,...n, Q)
k=0

From the system (5), for the Gauss-Seidel method the relation between two successive
iterations can be written as:

—(2¢ +ah, )Z Clgm)ei(J—l)tk + 482 Clgm)eijtk :Z (2e—ah, )Clgm—l)ei(j+1)tk .
k=0 k=0 k=0
From this relation it follows that:
Ze'“k{ck [45 (2& +ah, e “k] c"Y(2s—ah e™}=0,]= . (8)

As the vectors e are orthonormal:

N1 2k .%n 1, m=n
Ze ) _{0, m;tnzgm'"’ ©)
the equality (8) is true for any j=0,...,n, if:
c(™|ag - (2g+ah )e % ¢ (22 —ah, e =0, k=0,. (10)

The amplification factor and the smoothing factor of a numerical method
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In order to measure the growth or the decrease of a Fourier mode during one iterative
step and the convergence speed of a numerical method, one can use the amplification factor as
defined in [5], [12]:

Definition 1. For a numerical iterative method, the amplification factor g(t,) is the ratio
between the coefficient C,Em) after m iterates and the coefficient from the previous iterative
step, ¢\,

The convergence speed of a numerical method is better when the module of the

amplification factor smaller than 1.
The amplification factor of the Gauss-Seidel method can be obtained from (10):

(2 —ah,)e™
t)= — k=0, ..,n,
9(t) 4e—(2¢+ah)e™ " (1)

with the module:
|2& —ah, |
|g(t )|= , k=0,..,n
k J@2e+ah, ) +(4z)? —8(2¢ +ah, )cos(t, ) B

so that:

max{| g(t,) .k =0,...n}= g(0) [=1
and has the graphic showed in (Figure 1c).

smoothing factor g(tk)

(a) Jacobi method (b) pondered Jacobi method
(0=0.5)

amplification factor g(tk)

N N

il el

v —2
k

(c) Gauss-Seidel method
Figure 1: The module of the amplification factor for | =6, =0.1 and a=10 in the 1-
dimensional case
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For the pondered Jacobi method (Figurelb):
4e(1- o) + (2 +ah )e"™ + w(2s —ah )e™
g(tk) = de

k=0, ..,n  (13)

and

19(t) = \/(1—a)+a)costk)2+(azh—gwsintkj . (14)

When the boundary conditions are periodic, “the solution of the equation (2) is only
determined up to a constant, so the Fourier mode with & = 0 does not have to decrease during
an iteration” [12], so that the measure used for convergence is:

max{| g(t,) [ k=1...,n}.

Remark 1. In Figures 1b and 1c it can be seen that for the frequencies

ke {c% N —c%},c €(0,2) the amplification factor has the module | g(t,) |< % This means

that for the error components that have these frequencies, the numerical iterative method is

efficient: in the worst case they are reduced by a factor of at least % on each iteration step.

On the other hand, for the components having frequencies between (O,C%)U(N —c%, N] ,

the amplification factor is almost 1, thus for these frequencies the method is not efficent: these
components remain almost unchanged after one iterative step.

A well known property of a numerical iterative method used to solve a linear system is
the fact that it reduces efficiently the components that are oscillatory. One way to measure
this smoothing property is to determine the smoothing factor.

Definition 2 [11]. The smoothing factor of a numerical iterative method having the iteration
matrix M is the worst amplification factor module, taken for all the high frequencies and is
denoted by p(M) = max{| g(t,) |.t, € Tyign}-

level I=1 =2 =3 [=4 =5 =6
p(M ;) 1 1 1 1 1 1

p(My1) 0 0.5 0.8536 0.9619 0.9904 0.9976
p(Mgs) | 0.3333 0.4472 0.6786 0.8756 0.9637 0.9905

Table 1. The smoothing factor of Jacobi (J), Jacobi pondered (c«/) and Gauss-Seidel (GS)
methods for problem (2), a=0,6=1

The data from Table 1 show that the convergence speed of the studied methods

decreases as the grid step becomes smaller due to the poor reduction of the low frequencies.
Thus, these numerical methods are slowly convergent.
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One of the most efficient methods to overcome this disadvantage of a classical
iterative method is the multigrid method, which combines the property of such a method to
reduce the high frequencies with the coarse grid correction method that has complementary
properties: it reduces well the low frequencies.

The low and high frequencies spectrum

In order to design the multigrid method and for the study of its convergence and error
reduction properties it is necessary to split the frequency spectrum into high and low
frequencies. The splitting is made according to the effect of the smoothing method on the
error components: the low frequencies are reduced very little or not at all by the numerical
method, while the high frequencies are efficiently reduced, this being the fundamental
property of a classical numerical method.

W. Hackbush showed in [5] that for problem (2) with a=0 and £ =1, the smoothing
factor of the pondered Jacobi method is:
oM )= maxk{1—2a)sin2 kLZh' k=1,..,n,h =1/(n, +l)}. (15)
In  order to determine this factor he determined the eigenvectors:
V, :ﬁ(sin kKizh)},,k=1..,n and eigenvalues: A =4h~ sinszzh',k =1,..,n, of the

matrix of the system obtained after the discretization process:

2 -1 0 0 .0
|t o2 0o
L==| 0 -1 2 -1 .. 0|
| .
0 0 0 0 . 2

For the pondered Jacobi method, the relation between two successive error iterates is:
e™ =e™Y D 'Le™™", where D, is the diagonal part of the matrix. If each term of the

error is written with it's corresponding eigenvectors and eigenvalues:

n n n n n
D ey =My, —@D LY ¢y, = ¢y, —wD D "V Ay,
k=1 k=1 k=1 k=1 k=1

then the amplification factor is:
(m)
¢ ., kzh,
g(tk) —W =1-2wsIin T
Analysing the values obtained for the convergence rate, W. Hackbush defined the high

frequencies as the ones with ke{n'TJrl,nl} and the low frequencies: those with

ke[l,n'——irl:l.
2
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For the same problem, using the LFA method as in [12], the smoothing factor for the
pondered Jacobi method ((14) with a=0,£=1) is:

C(m)
p(M ) =max,{| g(t,) |,k =1...,n}=max, {lﬁl’ k :1,...,n,}:

k

(16)
= max, {L-2wsin’*(kzh ),k =1,...,n}.

For the smoothing factor obtained with the local Fourier analysis method ((14) or
(16)), although very close to the convergence rate form (15), the definition of low and high
frequencies cannot be done like in [5] because the graphic of the amplification factor

(Figurelb) is symmetric with respect to the k =% vertical line. For this reason and taking

into account the Remark 1, when using the local Fourier analysis of a numerical iterative
method or the multigrid method we propose the following definition of the smoothing factor:

Definition 3. The smoothing factor of an iterative numerical method that has the iteration

matrix M is:
p(M)=max{ g(t) 1, €Ty}, (17)
with: T ={k|k=c%,...,%—1} -the high frequencies domain from the expansion and
c{m N . . . . .
where: g(t,) :ﬁ,k :1,...,3—1 is the ratio of the coefficients of order k in the Fourier-

k
transform expansion of the error, c € (0,1) being a fixed constant. The set of low frequencies

isT, , = {k |k =1,...,cﬁ} _
2

Another reason we changed the definition (2) into (3) is the fact that in (7) the
coefficients corresponding to different frequencies are complex numbers. And so the ratio of
two succesive iterations of the same component can be made only in module. But when the
expansion has all the terms in K the coefficients of each component will represent the
amplitude of that oscillatory mode. In the remaining part of this section, we will determine the
expression in the real number set of the Fourier expansion for the error.

The discrete Fourier expansion in a point x, =sh, was (7):

N-1 i%s
E,=>ce " (18)

k=0

with N=n+1,s=0,..,N-1.
27k
Remark 2. If we denote €, ; = e N, then:
i27(N=k) R L4 P
enays=€ N =e"e N =g, ks=01..,N-1
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Remark 3. For N =n, +1=2"" and k =%we have e, =cos(sz) ,thus e is a real
2° 2
number. Also e, =1l .
Using the above remarks, the relation (18) becomes:

E, =c¢, +c%e2’ +C.8 +Cy 1els +.. +c?_1e%_1’S +c%+1e%_1’s. (19)

The coefficients ¢, can be computed using the reverse Fourier transform:
l N-1 2/rk

6= Ee M ,k=01..N-1. (20)

s=0

From this equalty, using the remark that the values E, are real numbers, it follows that:

Property 1. The coefficients in the Fourier expansion for a real valued function have the
properties:
i. ¢y, =¢,.k=01..,N-1;

ii. CO :WZESER;
s=0

iii. ¢y ek
2
Proof . 14 N
Chnak = Es =N €n- ks —
N s=0 N s=0
1 N-1 1 N - o (21)
=— Eseks=—ZE€ks=ck,k=0,l,...,N—1
N~ NS oo

ii. Replacing in (20) s =0;

iii. Using the Property 1a: ¢, =¢ , =c, €[J.
N——

2 2 2
The relation (19) and Property 1a lead to the following expression of the error in a point:

E, =c,+C, cos(s;;)+cels+clels+ +Cy By *Cy By =
—1 —1s —1 —-1s
2 2 2 2 2

N/2-1 (22)
=, +C, COS(S7) + 2Re[ > ckekst el

2 k=1

that has every term in [J . In this form, in the error expression are involved only half of the
components used for the complex Fourier expansion.

If in (22) we write the complex coefficients as ¢, =a, +ib, , the component of k order
will
have:

27ks . 2rks N
Re(c.e )=a, cos———b, sin—— ,k =1,.. -1.
( k k) k N k N 2
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Thus: ¥y

2wks 2wks
E,=c, +cvcos(ms) +2 ) (a,cos
N k=1

v — b, sin v )=

(23)

=1

= ¢, + cv cos(ms) — 2 Z A, sin(

2mks
N

- @)
k=1
only contains the frequencies: k € {0,1,...,%—1} and as the components are now real

numbers, two successive iterative steps can be easily compared. Moreover, the coefficients
2A =2,/a’ +b? now represent the amplitude of the sinusoids composing the error.

From the complex expression of the amplification factor obtained for k >1 ([12]):

cm=cm™g(t, ) mk=>1, (24)
we get the ratio of the amplitudes in this case:

m (m) P (m) )2
A;E) _ \/(ak )+<bk ) =|gk(t)l, k:l,_..,ﬂ—l.

A‘Em—l) \/(alsm_l) )2 R (blsm_l) )2 2

Using the Definition 3, the smoothing factor of the Gauss-Seidel method for problem

(2) is:
P(Mgg) = max |26 —ah | toeT v =
J(2¢ +ah)? +(4¢)* ~8s(2¢ + ah)) cost,
|2 —ah |

J(2e +ah)? +(4¢)* ~8e(2¢ +ah ) cos zc

and for the pondered Jacobi method:

heo 2
pMM,;)= max, . l9(t) = max, . \/(1—a)+a)COStk)2 +(a2 a)smtkj =
&

2
= J(l—w+wcos 7c)? +[azh—wsin ncj :

&

Conclusions
In the following we present the results we obtained for the smoothing factor using the

Definition 3 for the Gauss-Seidel and pondered Jacobi methods. The data in Tables 2, 3 and
4, presented below, lead to the following conclusions:
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e The Jacobi method is not efficient as a smoother in the multigrid method due to the
fact that it does not have the usual property of a numerical iterative method to
efficiently reduce the high frequency error components, but it reduces only the middle
part of the frequency spectrum
(ke(0,N/2-1)). And the multigrid method is based on the reduction of the high

frequencies by the smoothing method. Moreover, the coarse grid correction,
complementary to the smoothing method, is only efficient in reducing the low
frequencies, because only these components (being smooth) can be well approximated

on a coarse grid and in this case it should also reduce the frequencies from k =% to

k =%—1 although these belong to T,

igh *

e On the other hand, for the Gauss-Seidel or pondered Jacobi method, the property of
reducing the high frequencies determined using Definition 3 is even better than was
computed untill now using Definition 2 for each iterative step and applying these
methods more times makes them even more efficient.

e For the case of dominant convection (Table 4) as the number of layers used is
growing, the amplification factor becomes smaller, thus it is better to use the
numerical iterative method on a grid having more levels (at least six for the problem
studied here) in order to have a reduction of the low frequencies components of the
error, and even so the reduction is not efficient. This is why, as it is well known, for
the convection-diffusion equation, when convection is dominant, the numerical
iterative methods are often inefficient and special techniques have to be designed (for
example stream-line diffusion [6], [7] or hp-multigrid methods [8], [10]) in order to
overcome this inconvience.

Table 2: The smoothing factor of Gauss-Seidel (GS), Jacobi (J) and pondered Jacobi (cu))

a=10e=1 [=3 [=4 [=5 [=6
GS 0.6786 | 0.6786 | 0.6786 | 0.6786
0.8756 | 0.9637 | 0.9905 | 0.9976
c=0.25 J 0.9239 | 0.9808 | 0.9952 | 0.9988
' 1.0000 | 1.0000 | 1.0000 | 1.0000
wJ 0.8536 | 0.8536 | 0.8536 | 0.8536
(w=105)] 09619 | 0.9904 [ 0.9976 | 0.9994
GS 0.4472 | 0.4472 | 0.4472 | 0.4472
0.8756 | 0.9637 | 0.9905 | 0.9976
c=0.5 J 0.9239 | 0.9808 | 0.9952 | 0.9988
' 1.0000 | 1.0000 | 1.0000 | 1.0000
w.J 0.5000 | 0.5000 | 0.5000 | 0.5000
(w=105)] 09619 | 0.9904 [ 0.9976 | 0.9994

methods for model problem (2), a =0, =1 -pure diffusion
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a=1le=1 =3 =4 =5 [=6

GS 0.6612 | 0.6700 | 0.6743 | 0.6764
0.8656 | 0.9620 | 0.9903 | 0.9976
J 0.9240 | 0.9808 | 0.9952 | 0.9988

R 1.0000 | 1.0000 | 1.0000 | 1.0000
wd 0.8536 | 0.8536 | 0.8536 | 0.8536

(w=0.5) | 0.9620 | 0.9904 | 0.9976 | 0.9994

GS 0.4305 | 0.4388 | 0.4430 | 0.4451

0.8656 | 0.9620 | 0.9903 | 0.9976

c=0.5 J 0.9240 | 0.9808 | 0.9952 | 0.9988

1.0000 | 1.0000 | 1.0000 | 1.0000
wdJ 0.5002 | 0.5001 | 0.5000 | 0.5000
(w=0.5) | 0.9620 | 0.9904 | 0.9976 | 0.9994

Table 3: The smoothing factor of Gauss-Seidel (GS) , Jacobi (J) and pondered Jacobi ()
methods for model problem (2) and a=1,£=1

a=10,e=0.1 =3 1=4 l=5 [=6

GS 0.6950 | 0.3088 | 0.1497 | 0.4308
0.8845 | 0.7851 | 0.7632 | 0.9911
J 3.1250 | 1.5625 | 0.9981 | 0.9990

2028 3.1250 | 1.5625 | 1.0000 | 1.0000
wJ 1.6406 | 1.0167 | 0.8971 | 0.8647

(w=05) | 1.6406 | 1.0167 | 0.9983 | 0.9994

GS 0.4635 | 0.1730 | 0.0817 | 0.2502

0.8845 | 0.7851 | 0.7632 | 0.9911

c=0.5 J 3.1250 | 1.5625 | 0.9981 | 0.9990

3.1250 | 1.5625 | 1.0000 | 1.0000
wJ 1.6406 | 0.9276 | 0.6345 | 0.5368
(w=105)] 1.6406 | 1.0167 | 0.9983 | 0.9994

Table 4: The smoothing factor of Gauss-Seidel (GS) , Jacobi (J) and pondered Jacobi (/)
methods for model problem (2) and a =10, & =0.1 -dominant convection
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