
ANNOTATING A ROMANIAN LEXICON
IN A GENERATIVE FRAMEWORK

Anca Dinu

Abstract: We present in this paper an on-going research: the construction and annotation of a Romanian
Generative Lexicon (RoGL), following the generative lexicon theory. Our system follows the specifications of
CLIPS project for Italian language. It contains a corpus, an ontology of semantic types, a graphical interface and
a database from which we generate data in XML format. We describe here the graphical interface structure as
well as functionality and the annotation procedure.

Keywords: generative lexicon, semantic annotation, graphical interface, Romanian language

1. Introduction

We present in this paper1 an on-going research: the construction and annotation of a
Romanian Generative Lexicon (RoGL).

Currently, there are a number of “static” machine readable dictionaries for Romanian,
such as Romanian Lexical Data Bases of Inflected and Syllabic Forms (Barbu 2008),
G.E.R.L. (Vertan et al. 2005), MULTEXT, etc. Such static approaches of lexical meaning are
faced with two problems when assuming a fixed number of “bounded” word senses for
lexical items.

In the case of automated sense selection, the search process becomes computationally
undesirable, particularly when it has to account for longer phrases made up of individually
ambiguous words.

The assumption that an exhaustive listing can be assigned to the different uses of a
word lacks the explanatory power necessary for making generalizations and/or predictions
about words used in a novel way.

The Generative Lexicon (Pustejovsky 1995) is a type theory with richer selectional
mechanisms, which overcomes these drawbacks. The structure of lexical items in language
over the past ten years has focused on the development of type structures and typed feature
structures (Levin and Rappaport Hovav 2005, Jackendoff 2002). Generative Lexicon adds to
this general pattern the notion of predicate decomposition. Lexicons built according to this
approach contain a considerable amount of information and provide a lexical representation
covering all aspects of meaning. In a generative lexicon, a word sense is described according
to four different levels of semantic representation that capture the componential aspect of its
meaning, define the type of event it denotes, describe its semantic context and positions it
with respect to other lexical meanings within the lexicon.

GLs had been already constructed for a number of natural languages. Brandeis
Semantic Ontology (BSO), is a large generative lexicon ontology and lexical database for
English. PAROLE-SIMPLE-CLIPS lexicon is a large Italian generative lexicon with
phonological, syntactic and semantic layers. The specification of the type system used both in
the BSO and in CLIPS largely follows that proposed by the SIMPLE specification (Busa et
al. 2001), which was adopted by the EU-sponsored SIMPLE project (Lenci et al. 2000). Also,

1 This work was supported by CNCSIS-UEFISCSU, project PNII-IDEI 228/2007.

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

A n c a D i n u84

(Ruimy et al. 2005) proposed a method for semi-automated construction of a generative
lexicon for French from Italian CLIPS, using a bilingual dictionary and exploiting the French-
Italian language similarity.

Lexical resources, especially semantically annotated, are notoriously effort and time
consuming; thus, we tried to use available work as much as possible in our effort to construct
and annotate a Romanian generative lexicon.

The rest of this paper is structured as it follows. In section 2 Generative Lexicon Theory
is briefly outlined. Section 3 describes our general methodology and architecture for RoGL
construction and annotation. Section 4 describes the graphical interface and the annotation
tasks. Finally, in section 5, we discuss further work to be done.

2. Generative lexicon: Overview

A predicative expression (such as a verb) has both an argument list and a body:

(1)

Consider four possible strategies for reconfiguring the args-body structure of a predicate:
(i) atomic decomposition (do nothing – the predicate selects only the syntactic arguments):
 P(x1,…,xn)
(ii) parametric decomposition (add arguments):
 P(x1,…,xn) -> P(x1,…,xn, xn+1,…xm)
(iii) predicative decomposition (split the predicate into subpredicates):
 P(x1,…,xn) -> P1(x1,…,xn), P2(x1,…,xn) ,…
(iv) full predicative decomposition (add arguments and split the predicate):
 P(x1, ,…,xn) -> P1(x1,…,xn, xn+1,…xm),P2(x1,…,xn, xn+1,…xm),…
The theory uses the full predicative decomposition, with an elegant way of transforming the
subpredicates into richer argument typing: argument typing as abstracting from the predicate:

For example, possible types for the verb sleep are:

Table 1
Approach Type Expression
Atomic e → t λx[sleep]
Predicative e → t λx[animate(x) ʌ sleep(x)]
Enriched typing anim → t λx: anim[sleep(x)]

Under such an interpretation, the expression makes reference to a type lattice of expanded
types (cf. Copestake and Briscoe 1992).

Thus, Generative Lexicon Theory employs the “Fail Early” strategy of selection, where
argument typing can be viewed as pretest for performing the action in the predicate. If the
argument condition (i.e., its type) is not satisfied, the predicate either fails to be interpreted, or
coerces its argument according to a given set of strategies. Composition is taken care of by
means of typing and selection mechanisms (compositional rules applied to typed arguments).

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Annotating a Romanian lexicon in a generative framework 85

The lexical data structures in GL are composed of: (i) lexical typing structure, giving an
explicit type for a word positioned within a type system for the language; (ii) argument
structure, specifying the number and nature of the arguments to a predicate; (iii) event
structure, defining the event type of the expression and any subeventual structure; (iv) qualia
structure: a structural differentiation of the predicative force for a lexical item.

Schematically, the argument and body in GL look like this:

(2)

where AS = argument structure, ES = event structure, Qi = qualia structure and C =
Constraints. The original part of the GL structure is Qualia Structure, composed of:
(i) Formal: the basic category which distinguishes it within a larger domain; (ii) Constitutive:
the relation between an object and its constituent parts; (iii) Telic: its purpose and function, if
any; (iv) Agentive: factors involved in its origin or “bringing it about”. A prototypical lexical
entry for GL is given below:

Figure 1: Prototypical lexical entry

The Type Composition Language of GL is: (i) e is the type of entities; (ii) t is the type of truth
values (σ and τ, range over simple types and subtypes from the ontology of e.); (iii) If σ and τ
are types, then so is σ → τ ; (iv) If σ and τ are types, then so is σ • τ ; (v) If σ and τ are types,

then so is σ ʘQ τ, for Q = const(C), telic(T), or agentive(A). Finally, the Compositional Rules
of the theory are: (i) type selection: exact match of the type; (ii) type accommodation: the
type is inherited; (iii) type coercion: the type selected must be satisfied. The domain of
individuals (type e) is separated into three distinct type levels: (i) natural types: atomic
concepts of formal, constitutive and agentive; (ii) artefactual types: concepts of telic;
(iii) complex types: Cartesian types formed from both natural and artefactual types.

3. Methodology and architecture of RoGL

Creating a generative lexicon for any language is a challenging task, due to complex
semantic information structure, multidimensional type ontology, time consuming annotation

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

A n c a D i n u86

etc. Our system follows the specifications of CLIPS project for Italian language. It contains a
corpus, an ontology of semantic types, a graphical interface and a database from which we
generate data in XML format (figure 2):

Figure 2: Architecture of RoGL

As a starting point for the annotation process, we used the RORIC-LING Romanian
corpus (Hristea and Popescu 2003) to feed the annotation graphical interface with lexical
items in their context (phrase they appear in). The corpus is rather small (98 newspaper texts),
but it has the advantage that is already syntactically annotated in XML. We proceed with the
annotation of lexical units in their frequency order: we chose to first annotate the first
frequent 100 verbs, 100 nouns and 20 adjectives from the corpus.

The annotation is to be done web-based, via a graphical interface, to avoid
compatibility problems. The interface and the data base where the annotated lexical entries
will be stored and processed are hosted on the server of Faculty of Mathematics and
Informatics, University of Bucharest2. Each annotator receives a username and a password
from the project coordinator in order to protect already introduced data and also to protect
against introducing erroneous data.

The type ontology we choose is very similar with the CLIPS ontology. It has a top
node, with types Telic, Agentive, Constitutive and Entity, as daughters. The types Telic,
Agentive and Constitutive are intended to be assigned as types only for lexical units that can
be exclusively characterized by one of them. Type Entity has as subtypes Concrete_entity,
Abstract_entity, Property, Representation, and Event. In all, the ontology has 144 types and
can be further refined in a subsequent phase of RoGL, if the annotation process supplies
evidences for such a necessity.

To implement the generative structure and the composition rules, we chose a functional
programming language of the Lisp family, namely Haskell3. The choice of functional
programming is not accidental. With Haskell, the step from formal definition to program is
particularly easy. Most current work on computational semantics uses Prolog, a language
based on predicate logic and designed for knowledge engineering. Unlike the logic
programming paradigm, the functional programming paradigm allows for logical purity.
Functional programming can yield implementations that are remarkably faithful to formal
definitions. In fact, Haskell is so faithful to its origins that it is purely functional, i.e. functions
in Haskell do not have any side effects. Our choice was also determined by the fact that
reducing expressions in lambda calculus (obviously needed in a GL implementation),
evaluating a program (i.e. function) in Haskell, and composing the meaning of a natural
language sentence are, in a way, all the same thing.

2 At http://ro-gl.fmi.unibuc.ro.
3 The Haskell homepage http://www.haskell.org was very useful. The definitive reference for the language is
Peyton Jones (2003). Textbooks on functional programming in Haskell are Bird (1998) and Hutton (2007).

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Annotating a Romanian lexicon in a generative framework 87

4. The annotation

We describe here the graphical interface structure and functionality as well as the
annotation procedure. The first task the annotator has to deal with is to choose one of the
meanings of the possibly homonym lexical unit. The annotator sees a phrase with the target
word highlighted. To help the annotator, a gloss comprising the possible different meanings
from an electronic dictionary pops up. Here we are interested only in distinguishing between
different meanings of homonym words (same orthography and pronunciation, completely
different meaning, such as bank: institution or chair), not the different meaning levels of the
same lexeme (such as book: the physical object or the information). The former aspect of
meaning is to be described by specifying the type of the lexical item as complex, i.e.
composed by two or more different semantic types from the ontology.

Figure 3: First tasks of the annotation process

The next step for the annotator is to choose the type of the lexical unit from a tree
structure of 144 types that compose the type ontology (figure 3). As the annotation process
progresses, we will be able to propose to the annotator a short list of types to choose from,
based on a statistics of most frequent types selected until the moment of annotation. So, only
if the annotator cannot find the right type to assign to the lexical unit in the proposed short
list, he has access to the whole type ontology. Thus, the complexity of annotation task
remains tractable: the annotator does not have to bother with the inheritance structure or with
too many types to choose from. For example, in Brandeis Shallow Ontology (BSO), a shallow
hierarchy of 17 types was set (table 1). These types were selected for their prevalence in
manually identified selection context patterns. It is important to notice that the same lexical
unit is presented several times to the annotator in a different context (phrase). For the same
disambiguated meaning, the annotator may enhance the existing annotation, adding for
example another type for the lexical unit (see the dot operator for complex types in section 2).
The classical example is the semantic type received in generative lexicon theory for the
lexical unit book: physical object @ information, which is a complex type, obtained from two
basic (natural or artefactual) types and the dot operator @.

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

A n c a D i n u88

Table 2: Type system for annotation in BSO
Top types Abstract entity subtypes
abstract entity attitude
human emotion
animate property
organization obligation
physical object rule
artefact
event
proposition
information
sensation
location
time period

The part of speech is automatically taken from the corpus. The annotator has to refine it
further into one of the following pos tags, which are not present in the corpus as such:
intransitive verb, transitive verb, ditranzitive verb, non-redicative noun, predicative noun
(such as deverbals; collective simple nouns, e.g. grup ‘group’; nouns denoting a relation, e.g.
mamă ‘mother’; quantity, e.g. sticlă ‘bottle’; part, e.g. bucată ‘piece’; unit of measurement,
e.g. metru ‘metre’; property, e.g. frumuseţe ‘beauty’), adjective. Depending on the particular
pos selected for a lexical unit, its predicative structure modifies. Accordingly, once one of the
pos tags was selected, our graphical interface automatically creates a template matching
argument structure with no arguments, with Arg0, with Arg0 and Arg1, or with Arg0, Arg1
and Arg2.

The annotator is then asked to specify the qualia structure of the current word. The
Qualia Structure in RoGL follows the CLIPS extended qualia structure (figure 4): each of the
four qualia roles has a (dropdown) list of extended roles which the annotator has to choose
from. The choice may be obligatory, optional or multiple.

Figure 4: Extended qualia roles from CLIPS

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Annotating a Romanian lexicon in a generative framework 89

Then the annotator has to provide the words which are in the specified relation with the
current word. Here a distinction is to be made between existing words (already introduced in
the data base) and words not jet introduced. For existing words, a link between each of them
and the current word is automatically created. For the others, a procedure of verification for
the data base has to be run at some time intervals, in order to check and update the existing
links, so that words in the lexicon become maximally connected. Figure 5 depicts a fragment
of the graphical interface for annotating the qualia structure:

Figure 5: Fragment of graphical interface for annotating qualia structure

The Predicative Representation describes the semantic scenario the considered word
sense is involved in and characterizes its participants in terms of thematic roles and semantic
constraints. We make use again of the expertise of the CLIPS developers in adopting an
adequate predicative representation for RoGL. In SIMPLE project, the predecessor of CLIPS
project, only the predicative lexical units (units that subcategorize syntactic arguments)
receive a predicative representation: for example, a word like constructor (which is not the
head of a syntactic phrase) is not linked with the predicate to construct. In CLIPS (and also in
RoGL), the non-predicative lexical units may be linked (when the annotator decides) to a
predicative lexical unit, thus constructor is linked by an AgentNominalization type of link to
the predicative lexical unit to construct, so it fills the arg0 of this predicate. The type of link
Master is to be chosen between a predicative unit and its predicative structure
(representation). Thus, in the ideal case, a semantic frame such as to construct (the predicate),
construction (pacient or process nominalization) and constructor (agent nominalization) will
end up being connected (with the proper semantic type of link) in the data base.

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

A n c a D i n u90

Figure 6: The semantic links for the predicate a construi ‘to construct’

The annotation task for the predicative structure consists of choosing for each argument
(one, two or three) the semantic type from the ontology list and their thematic roles from the
thematic roles list: Protoagent (arg0 of kill), Protopatient (Arg1 of kill), SecondParticipant
(Arg2 of give), StateOfAffair (Arg2 of ask), location (Arg2 of put), Direction (Arg2 of move),
Origin (Arg1 of move), Kinship (Arg0 of father), HeadQuantified (Arg0 of bottle):

Figure 7: Annotation of predicative structure

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Annotating a Romanian lexicon in a generative framework 91

5. Conclusions

Manual annotation, although standardized and mediated by the graphical interface is
notoriously time consuming especially for complex information such as those required by a
generative lexicon. We plan to use machine learning techniques to automate the process,
taking advantage of the existing work for Italian. Thus, the CLIPS large and complex
generative lexicon may be used in an attempt to automatically populate a Romanian GL. The
idea is not original: such a research exists for French, exploiting the French-Italian language
similarity, with encouraging results (Ruimy et al. 2005). The fact that Romanian is in the
same group of Romance languages creates the morpho-syntactic premises to obtain similar
results. However, the final annotation, we believe, is to be done manually.

Anca Dinu
University of Bucharest
Faculty of Foreign Languages and Literatures
anca_d_dinu@yahoo.com

References
Barbu, A. M. 2008. Romanian lexical data bases: Inflected and syllabic forms dictionaries. <http://www.lrec-

conf.org/proceedings/lrec2008>.
Bird, R. 1998. Introduction to Functional Programming Using Haskell. London: Prentice Hall.
Busa, F., Calzolari, N., Lenci, A. 2001. Generative Lexicon and the SIMPLE Model: Developing semantic

resources for NLP. In P. Bouillon and F. Busa (eds.), The Language of Word Meaning, 333-349.
Cambridge: Cambridge University Press.

Copestake, A. and Briscoe, T. 1992. Lexical operations in a unification-based framework. In J. Pustejovsky and
S. Bergler (eds.), Lexical Semantics and Knowledge Representation, 101-119. Berlin: Springer Verlag.

Hristea, F., Popescu, M. 2003. A Dependency Grammar approach to syntactic analysis with special reference to
Romanian. In F. Hristea and M. Popescu (eds.), Building Awareness in Language Technology, 9-34.
Bucharest: Editura Universitatii din Bucuresti.

Hutton, G. 2007. Programming in Haskell. Cambridge: Cambridge University Press.
Jackendoff, R. 2002. Foundations of language: Brain, meaning, grammar, evolution. Oxford: Oxford

University Press.
Lenci, A., Bel, N., Busa, F., Calzolari, N., Gola, E., Monachini, M., Ogonowsky, A., Peters, I., Peters, W.,

Ruimy, N., Villegas, M., Zampolli, A. 2000. SIMPLE: A general framework for the development of
multilingual lexicons. International Journal of Lexicography XIII (4): 249-263.

Levin, B. and Rappaport Hovav, M. 2005. Argument Realization. Cambridge: Cambridge University Press.
Peyton Jones S., (ed.). 2003. Haskell 98 Language and Libraries. Cambridge: Cambridge University Press.
Pustejovsky, J. 1995. The Generative Lexicon. Cambridge, MA: MIT Press.
Ruimy, N., Bouillon, P. and Cartoni, B. 2005. Inferring a semantically annotated generative French lexicon from

an Italian lexical resource. In Third International Workshop on Generative Approaches to the Lexicon.
May, 19-21, 2005, Geneva, 218-226.

Vertan, C., von Hahn, W. and Gavrilă, M. 2005. Designing a parole/simple German-English-Romanian lexicon.
In Language and Speech Infrastructure for Information Access in the Balkan Countries Workshop
Proceedings – RANLP 2005, September 2005, Borovets, Bulgaria, 82-87.

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Provided by Diacronia.ro for IP 216.73.216.28 (2025-08-06 03:47:43 UTC)
BDD-A9849 © 2010 Universitatea din București

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

