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Abstract: We present a new automatic learning system for cognate identification. We design a linguistic-
inspired substitution matrix to align sensibly our training dataset. We introduce a PAM-like technique, similar to
the one successfully used in biological sequence analysis, in order to learn substitution parameters. We propose a
novel family of parameterised string similarity measures and we apply them together with the PAM-like matrices
to the task of cognate identification. We train and test our proposal on standard datasets of Indo-European
languages in orthographic format based on the Latin alphabet, but it could easily be adapted to datasets using any
other alphabet, including the phonetic alphabet if data was available. We compare our system with other models
reported in the literature and the results show that our method outperforms both orthographic and phonetic
approaches formerly presented, increasing the accuracy by approximately 5%.
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1. Introduction

Language is a defining feature that distinguishes modern humans from all the other
species, is a carrier of culture and plays a key role in communication. The analogy of
language evolution with species evolution, predicted by Charles Darwin (1859) in his On the
Origin of Species has aroused a growing interest in the scientific community following the
extraordinary progress of computational molecular biology in the field of genomes.
Bioinformatics techniques are now applied to the field of natural language processing where
they are making significant contributions and presenting exciting opportunities for further
investigation.

Natural languages that originate from a common ancestor are genetically related, words
are the backbone of any natural language and cognates are words sharing the same ancestor
and etymology. Therefore cognate identification represents the foundation for discovering the
evolutionary history of languages. However, cognate recognition has proved to be useful not
only in historical linguistics, but also in very diverse fields of natural language processing.
Applications that benefit from cognate identification include lexicography (Brew and
McKelvie 1996), parallel bilingual corpora processing, such as sentence alignment (Melamed
1999), word alignment (Tiedemann 1999, Kondrak 2005) and lexicon translation (Mann and
Yarowsky 2001), statistical machine translation (Kondrak et al. 2003), and confusable drug
name detection (Kondrak and Dorr 2004).

In historical linguistics, cognates are also called strict or genetic cognates as they derive
from a “vertical” transmission and they do not include borrowings. Borrowings or loans are
words borrowed from other languages through a “horizontal” transmission and for this reason
do not follow the same phonological changes that occur over time. In many disciplines of
natural language processing, the term cognates or broad cognates has a wider meaning and
also includes borrowings.

When relatedness between cognates have to be evaluated, the methodologies applied
can be either orthographic, where cognates are analysed in their writing form of graphemes,
or phonetic, where cognates have to be represented in a phonetic notation in order to be
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examined. The orthographic approach relies on the fact that alphabetic character
correspondences represent in some way sound correspondences, as sound changes leave
traces in the orthography. However, it does not require any phonetic transcription, whose
attainment is still a very time consuming and challenging task. On the other hand, in
evaluating word relatedness, phonetic methods depend on phonetic transcriptions of texts, but
benefit from the phonetic characteristics and features of phonemes that can be decomposed
into vectors of phonetic attributes. Even if for the task of cognate identification a phonetic
approach is supposed to be more accurate than an orthographic one for its understanding of
phonetic changes, the debate is still open and a comparative evaluation of several recent
results seems to prove the opposite (Mackay and Kondrak 2005, Kondrak and Sherif 2006,
Kondrak 2009).

Another differentiating feature between methods applied to the assessment of word
relatedness is the capacity to adapt to different contexts, and, based on that, evaluation
systems can be either static or active. A static system is based on manually designed and
incorporated knowledge, does not require any supervision and is not able to learn by
processing data. On the other hand, an active system has the capacity to learn and adjust, but
may need supervision.

Several different approaches to the cognate identification problem have been proposed
and orthographic or phonetic methodologies have been applied as well as learning algorithms
or manually-designed procedures. In this paper' we consider some authoritative methods
proposed in the literature and compare them with our novel system.

The remainder of the paper is organized as follows. Section 2 introduces alignments and
substitution matrices to the task of word relatedness. Section 3 proposes a new learning
system, including a linguistic-inspired substitution matrix to align the training dataset, a
PAM-like technique to produce scoring schemes and a novel family of string similarity
measures to score the similarity between strings. Section 4 describes the experimental design
including the datasets and the evaluation methodology used. Section 5 presents the results of
this study and compares them with others reported in the literature. Finally, section 6 reports
the conclusions reached by this investigation and our future plans.

2. Word relatedness

Cognate words can be studied by string matching techniques and cognate recognition
represents a typical inexact string matching problem (Gusfield 1997). By adopting this
approach to determine the relatedness of two strings, it is possible to either measure their
distance, evaluating how distant the two strings are from each other, or to measure their
similarity, calculating instead how similar the two strings are. The distance method leads to a
minimisation problem because it aims to find the minimum distance between two strings,
while the similarity method guides towards a maximisation problem as its target is to find the
maximum similarity between two strings.

2.1 Alignments

The task of calculating the distance or the similarity between two strings is closely
related to the job of finding an optimal alignment between the two strings: dynamic

' We would like to thank Ana Fortun for her contribution to the linguistic-inspired substitution matrix, Grzegorz
Kondrak for providing his version of the test dataset and Brett Kessler for commenting on his lists.
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programming algorithms can perform both tasks (Gusfield 1997). Global or local alignment
algorithms, widely used in biological sequence analysis where strings are generally addressed
as sequences, usually consist of a scoring system, that reports distances or similarities
between the characters of the alphabet employed, and a procedure that finds the optimal
alignment. Even if the small length of the cognate words could make global alignment
apparently more appropriate, local alignment can be useful in order to focus on the word
roots, disregarding inflectional and derivational affixes (Kondrak 2000). Local alignment is
only appropriate under the similarity approach. The dynamic programming algorithm for
solving the problem of global sequence alignment is known as the Needleman-Wunsch
algorithm (Needleman and Wunsch 1970), but the more efficient version generally used was
introduced by Gotoh (1982). The dynamic programming algorithm for solving the problem of
local sequence alignment is called the Smith-Waterman algorithm (Smith and Waterman
1981), but the more efficient version generally used is again the one proposed by Gotoh
(1982).

2.2 Substitution matrices

Substitution matrices or scoring matrices are widely used in bioinformatics in the
context of protein or nucleic acids sequence alignments. The significance of the resulting
alignment depends greatly on the chosen scoring scheme, which is generally symmetric and
whose choice must be determined by the type of application (Gusfield 1997).

Given an alphabet A with |A| > 2, each character of A is more or less likely to transform
into several other characters over time. A substitution matrix |A|-by-|A | over A represents the
rates at which each character of A may change into another character of A. These rates in
principle can be costs, when they signify distances, or can be scores, when they signify
similarities. Ideally, substitution matrices should reflect the true probabilities of mutations
occurring through a period of evolution and should contain values proportional to these
probabilities.

There are many different ways to construct a substitution matrix, but the general
approach is to assemble a large sample of verified pairwise alignments, or multiple sequence
alignments, and derive the values using a probabilistic model. Ideally, the values in the matrix
should reveal the phenomena that the alignments try to represent. The target is to assign a rate
to the alignments that gives a measure of the relative likelihood that the sequences are related
as opposed to being unrelated (Durbin et al. 1998). To compare these two hypotheses, the /og-
odds-ratio is considered, that is the logarithm of the ratio of the probability that the sequences
are associated as opposed to being random. The choice of the logarithm base is generally not
important. In the related or match model, aligned pairs of residues occur with a joint
probability, and the probability for the whole alignment is the product of these joint
probabilities. In the unrelated or random model, the probability of the two sequences is just
the product of the probabilities of each character, because the model assumes that each
character occurs independently. When properly arranged, these log-odds-ratios, that may be
scaled and rounded, constitute the substitution matrix. Ideally, if the similarity approach is
adopted, positive and negative scores should indicate respectively conservative and non
conservative substitutions. Indeed, when two characters are expected to be aligned together in
related sequences more often than to occur by chance, then the odds-ratio is greater than one
and the score is positive. It is worth noting that the rates of identical character substitutions
are inversely proportional to their occurrences because the rarer the character is, the smaller
the likelihood to find two of them aligned by chance.
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3. A new learning system

In order to study word relatedness, we have decided to choose the similarity approach
which is the standard in biological sequence analysis and frequently used in natural language
processing. Similarity allows local alignment, as well as global alignment, to be performed
and it leads to the maximisation problem of finding the highest scoring alignment of the two
words. We have developed this new learning system utilising orthographic data based on the
Latin alphabet, but our proposal may easily be adapted to any alphabetic system, including the
phonetic alphabet.

3.1 A linguistic-inspired substitution matrix

In order to generate automatically a sensibly aligned training dataset, we have produced
a linguistic-inspired substitution matrix based on knowledge of orthographic changes in the
Indo-European languages. We have considered the 26 letters of the Latin alphabet and we
have prepared a symmetric 26-by-26 matrix that contains a-priori likelihood of transformation
between each character of the alphabet into another. We have given a value of 2 to all the
elements of the main diagonal, because it is likely that a character preserves itself. We have
assigned 0 values to all the character transformations considered “possible”, a score of -3 to
all the character transformations considered “impossible” and a gap penalty of —1 for insertion
and deletion (indels), to avoid possible overlaps between two indels and an “impossible”
match. We have tried to represent in this linguistic-inspired matrix the traces that systematic
sound changes left in written languages. Vowel shift chains, consonant shift chains including
Grimm’s and Verner’s laws, Centum-Satem division, rhotacism, assimilation, dissimilation,
lenition, fortition and L-vocalisation have been considered. We have used this substitution
matrix to perform global pairwise alignment on cognate pairs by the Needleman-Wunsch
algorithm (Needleman and Wunsch 1970, Gotoh 1982), which is the standard for global
sequence alignment. If more than one optimal alignment has been found, one alignment has
been chosen through an alternate trace back (N1 | \Te | «XT | «TXN | TX | 1K) with
the aim of assuring a more balanced learning process by avoiding possible bias due to always
giving priority to the same conditional predicates.

3.2 PAM matrices

We have investigated Point Accepted Mutation (PAM) matrices that have been the
standard and sole substitution matrices for amino acid alignments up until the advent of
BLOSUM matrices (Henikoft and Henikoff 1992). The term PAM refers to a family of amino
acid substitution matrices, developed by Dayhoff and Eck (1968), Dayhoff et al. (1972, 1978),
which encode and summarise expected evolutionary changes of amino acids. An accepted
point mutation in a protein is a replacement of one amino acid by another that has been
accepted by natural selection and passed on to its progeny. The name PAM is also used as a
measure unit to express the evolutionary divergence between two amino acid sequences. In
this way, a PAMO matrix coincides with the identity matrix where each character is
considered maximally similar to itself, but not able to transform into any other character. The
foundation of Dayhoff and co-workers approach is to obtain substitution rates from global
alignments between closely related proteins and then to infer from this data longer
evolutionary divergences. A mutation probability matrix is calculated from comparisons of
sequences with no more than 1% divergence and all the PAM matrices are extrapolated from
it. This approach assumes that the frequencies of the amino acids remain constant over time
and that the mutational process causing replacements in an interval of 1 PAM unit operate the
same for longer periods (Gusfield 1997).
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3.3 PAM-like matrices

Due to the lack of supervised and organised databases of cognate words and to the small
length of words compared with the length of biological sequences, we have been forced to
differentiate partially our method, from the one Dayhoff and co-workers used to create the
PAM matrices for biological sequence analysis. Their starting point was to identify a group of
protein families where each pair of sequences showed amino acid diversity up to 15% and
from them they built hypothetical phylogenetic trees with the parsimony method (Dayhoff
and Eck 1968). The group of cognate families showing up to 15% of identity that we have
been able to extract from our dataset has been completely useless because it was composed of
a few families of nearly identical words where the only mismatches were due to indels.
Increasing the identity threshold up to 25% or 35% has not produced any substantial
improvement. For example, the cognate words Italian fiore and French fleur, that are clearly
closely related, present a diversity of 80% as 4 letters out of 5 are different. We have decided
to use the whole dataset available and due to the small size of the cognate families we have
compared the cognate words with each other and not with their hypothetical ancestors. We
have then followed the Dayhoff method to produce a family of PAM-like matrices based on a
non symmetric matrix M of mutation probabilities. Firstly, a matrix A of accepted point
mutation has been calculated ignoring the evolutionary direction meaning that A(i,j) and
A(j,1) were incremented every time character A; was replaced by 4; or vice-versa. Then the
relative mutability m(j) of each character 4; has been calculated as the ratio of observed
changes to the frequency of occurrence. Finally, M has been calculated as follows:

oy mEm(f)* (i, ) o
(D) M(z,] = ZiA(i,j) V i#]j
2) MG, j)=1-pu*m(i) Vo

where M(i,j) contains the probability that character A; mutates to character A; in 1 PAM unit
and A is a proportionality constant we set to 1. To generate scoring matrices suitable for
longer periods of time, we have produced matrices M" by multiplying matrix M by itself n
times that gives the probability that any particular character mutates to another one in » PAM
units. Each PAMn matrix was obtained by the following log-odds-ratios where f(i) and f(j)
are the observed frequencies of character 4; and A; normalized respectively by the number of
all mutations.

() PAMnGj)= 10log, LUV M 1) 1o 100 M(0J)

@)= 1() /)
We have not scaled the values in the PAM-like matrices and we have left the final scores with
two decimal numbers to preserve accuracy. Because we have not limited the identity

percentage within the cognate family considered for the training, ten PAM-like matrices have
shown to be sufficient for modelling the divergence time of the languages considered.

3.4 A family of parameterised string similarity measures

We have proposed a family of parameterised string similarity measures obtained
through different normalisations of a generic similarity rating algorithm score. In doing so,
our aim has been to take into account the similarity of each string with itself in order to
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eliminate, or at least reduce, the bias due to different string length. Indeed, alignments of two
identical strings do not have a constant rate under the similarity approach because the score
depends on the length of the string but also on the substitution rates of the characters
involved.

Given two strings, S; and S,, and a generic similarity rating algorithm AL, we have
defined the family of string similarity measures reported in Table 1. The similarity measure
sim; normalises the rate of a similarity scoring algorithm AL applied to calculate the similarity
of Si with S, by the arithmetic mean of the rates given by the same algorithm applied to
calculate the similarity of each string with itself. The similarity measure sim, does the same
but normalises the rate by the weighted arithmetic mean that considers also the length of the
two strings. The similarity measures sims and simy employ a normalisation by using the
geometric mean and the weighted geometric mean respectively, while sims and sims normalise
by the harmonic mean and the weighted harmonic mean. The Heronian mean is used to
normalise the rate in sim;, the root mean square is utilised in simg and the contra-harmonic
mean is employed in simg. Following the idea of considering the similarity of each string with
itself in calculating string similarity, other similarity measures may be added to this family.

We have used these new similarity measures with the Needleman-Wunsch algorithm
(Needleman and Wunsch 1970, Gotoh 1982) for global alignment and with the Smith-
Waterman algorithm (Smith and Waterman 1981, Gotoh 1982) for local alignment, but the
new measures may be used with any other similarity rating algorithm.

Table 1: A family of parameterised string similarity measures

String similarity measures Normalised by

2% AL(S,.S,)

sim (S,,S,,AL) =
AL(S,,S,)+ AL(S,,S,)

Arithmetic Mean

(len(S,) +1len(S,)) * AL(S,,S,)
((len(S,)* AL(S,..5,) +len(S) * AL(S,..S.)

sim,y(8,,S,, AL) = Weighted Arithmetic Mean

AL(S,,S,)

sim,(S,,S,,AL) = .
o JAL(S,.5)* AL(S,.S,) Geometric Mean

AL(S,,S,)

sim,(S,,S,, AL) =
S’lm4( 1592 ) len(S) )+/W,(S2\)/AL(S“SI)Ien(sl) % AL(SE,SE)IW:(SQ)

Weighted Geometric Mean

_ (AL(S,,S)+ AL(S,,S,))* AL(S,,S,)
Sim. S,S,AL — 121 2272 172 .
5(S,,8,,4L) 2% AL(S, S * AL(S..S,) Harmonic Mean

(len(S))* AL(S,,S,) +len(S,)* AL(S,,S,)) * AL(S,,S,)

sim(S,,S,,AL)= . .
simg(S,,S,, AL) (len(S,) + Ien(S,))* AL(S,.S.)* AL(S,.5,) Weighted Harmonic Mean
_ 3% AL(S,,S,)
sim.(S,,S,,AL) = U2 ;
T AL(S,,S,) + [ AL(S,,S,) * AL(S,,S,) + AL(S,,S,) Heronian Mean
AL(S,,S,)

simy(S,.5,, AL) =

\/(AL(S“SI)E +AL(S..S,) 2 Root Mean Square

. (AL(S,,S)) + AL(S,, S,)) * AL(S,, S,)
simy(S,,S,,AL)= 1
my(S,,S,,AL) AL(S,. S, + AL(S,.S,) Contraharmonic Mean

4. Experimental design

We have designed our experiments with the aim of generating an automatic system able
to learn meaningful information, such as traces of sound correspondences left in the words’
orthography, and to apply it to the task of cognate identification.
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4.1 Datasets

In order to develop our system, we have employed a training dataset and a test dataset
with no intersection in their language sets.

The training dataset for our learning system has been extracted from the Comparative
Indo-European Database by Dyen et al. (1992). This corpus contains 200-word Swadesh lists
(Swadesh 1952) of universal, non cultural and stable meanings from eighty-four
contemporary Indo-European speech varieties. In it, each word is presented in orthographic
format without diacritics, using the 26 letters of the Roman alphabet. The data are grouped by
meaning and cognateness, which is reported as certain or doubtful. From all the languages
available, we have considered three Romance languages (Italian, Portuguese and Spanish) and
three Germanic languages (Dutch, Danish and Swedish) to have a balanced training dataset
able to learn traces of sound correspondences of most of the language families of which the
test dataset is made, but contemporarily avoiding any overlap between the languages of the
training and test datasets. From this group of six languages, we have extracted about 650
cognate pairs by considering only the word pairs reported by Dyen et al. (1992) as certain
cognates and only the first cognate pair, if more words were provided for the same meaning in
the same language. We have corrected a few evident errors. We have then automatically
aligned these word pairs as described in section 3.1.

The test dataset consists of the orthographic form of the 200-word Swadesh lists
(Swadesh 1952) of English, German, French, Latin and Albanian provided by Kessler (2001)
enhanced with his cognateness information. We have discovered two inconsistencies® related
to the cognation of two French—German word pairs, as the author has confirmed. To make our
results properly comparable with others reported in the literature (Mackay and Kondrak 2005,
Kondrak and Sherif 2006) where the same test datasets have been used, we have decided not
to correct the mentioned errors.

4.2 Evaluation methodology

Cognate identification is an excellent method of measuring the ability of a word
similarity evaluation system. We have examined pairs of words belonging to different
languages but having the same meaning, for which the cognateness is known information.
Ten language pairs deriving from the combination of the five languages present in the test
dataset have been considered.

We have produced two families of PAM-like matrices, one based on the Roman
alphabet and one on its extension with gap, as proposed in section 3.3. The two learning
models, trained on the 6 language dataset described in section 4.1, have been named
respectively DAY 6 and DAY 6b.

We have employed these families of PAM-like matrices to align and rate the word pairs
of the test dataset with the basic sequence alignment algorithms (Needleman and Wunsch
1970, Smith and Waterman 1981, Gotoh 1982) and the family of parameterised similarity
measures proposed in section 3.4. For the model based on the Roman alphabet, a unary gap
penalty has been applied in the alignment algorithms. Our aim has been to assign a score to
each word pair that represents how likely the words are to be cognates. The calculated rates,
which are relative to each other and do not reflect any universal scale, have then been ordered.

* The Latin word folium ‘leaf’, is reported to be cognate with the French feuille and the German Blatt, but the
latter two are not reported as cognates with each other. The same happens to the Latin word collum ‘neck’ with
the French cou and German Hals.
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When more word pairs have showed the same rate, the alphabetic order has been considered
as well, to avoid random results and make the experiments reproducible. We have expected to
find high density of true cognates at the top of the list and low density of true cognates at its
bottom. To appraise our string similarity system on the task of cognate identification, we have
not used a score threshold that may be influenced by the type of application, the method used
and the degree of language relatedness (Kondrak 2009). Instead, we have borrowed from the
field of Information Retrieval, a measure designed specifically to evaluate rankings, the
11-point interpolated average precision (Manning and Schiitze 1999). For each level of recall
Re{0.0, 0.1, 0.2, ..., 1.0}, it calculates the interpolated precision, which is the highest
precision found for any recall level R' > R, and then it averages these eleven values. This
measure has also been frequently used by other systems in the field of cognate recognition
(Mackay and Kondrak 2005, Kondrak and Sherif 2006) with which we wanted to make our
results properly comparable. For the same reason, we have not distinguished between
cognates and borrowings.

5. Experimental results

We have employed the Needleman-Wunsch algorithm (NW) for global alignment and the
Smith-Waterman algorithm (SW) for local alignment with the novel family of string similarity
measures to evaluate the performance of our cognate identification system. For each PAM-
like matrix and for each similarity measure, we have computed the 11-point interpolated
average precision for each of the ten language pairs of our test dataset and then we have
calculated their average, standard deviation, variance and median. The two models DAY 6 and
DAY6b achieve very good results especially when employing local alignment with the Smith-
Waterman algorithm, even if the difference when using global alignment is not significant.
DAY6D, that utilises the Roman alphabet extended with gap, achieves the best results
suggesting that the system is also able to learn appropriate gap penalties. Figure 1 shows the
results produced by the first ten PAM-like matrices of DAY6b, using NW and SW
respectively. As the identity matrix can be considered as a PAM matrix at 0 evolutionary
distance, it has been included for completeness.
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Figure 1 - Averaged 11-point interpolated average precision for DAY6b using NW and SW

The PAM-like matrices PAM4, PAMS, PAM6 and PAM?7 produce the higher averaged 11-
point interpolated average precisions for all the family of similarity measures. All the
similarity measures proposed perform consistently well and outperform the basic algorithms
on which they are based.

5.1 Related works

Mackay (2004) on the task of cognate identification followed the orthographic approach
and developed a suite of Pair Hidden Markov Model (PHMM) variations and training
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algorithms based on a model originally presented by Durbin et al. (1998). The training dataset
consisted of about 120,000 word pairs extracted from the Comparative Indo-European
Database by Dyen et al. (1992). A development dataset was used to determine several
parameters of the models. Mackay and Kondrak (2005) tested this system on the dataset
proposed by Kessler (2001), that also provides word phonetic transcriptions, and they
compared it with ALINE (Kondrak 2000). This is an algorithm for phonetic sequence
alignment which incorporates linguistic knowledge. Mackay and Kondrak tested the PHMMs
also against the Levenshtein distance with Learned Weights (LLW) method, formerly
proposed by Mann and Yarowsky (2001) in the task of lexicon translation. LLW learned the
costs for edit operations from the same orthographic training dataset using a stochastic
transducer. Mackay and Kondrak showed that all the PHMMs outperformed the other
methods in terms of 11-point interpolated average precision and the one which produced the
better results will be called hereinafter, simply, PHMM.

Kondrak and Sherif (2006) working on orthographic data developed four different
models of a Dynamic Bayesian Net previously proposed by Filali and Bilmes (2005) in the
field pronunciation classification. In order to train their system on the task of cognate
recognition, Kondrak and Sherif extracted from the Comparative Indo-European Database by
Dyen et al. (1992) about 180,000 word pairs. They used them twice to enforce the symmetry
of the scoring and they built up a development dataset to set-up the parameters of their
system. They also evaluated a group of other phonetic and orthographic algorithms, including
ALINE (Kondrak 2000), LLW (Mann and Yarowsky 2001), and PHMM (Mackay and
Kondrak 2005), and tested them on the dataset proposed by Kessler (2001). One of the DBN,
called hereinafter only DBN, outperformed in terms of 11-point interpolated average
precision all the other systems including PHMM, but not significantly.

Kondrak (2009) investigated identification of cognates and recurrent sound
correspondences testing several phonetic methods on the test dataset provided by Kessler
(2001). His best result was achieved combining ALINE (Kondrak 2000) with a sound
correspondence-based method trained using a six languages development dataset. This dataset
was extracted from the orthographic Comparative Indo-European Database by Dyen et al.
(1992) and then manually transcribed into a phonetic notation. This system improved the
performance of ALINE, but did not outperform in terms of 11-point interpolated average
precision the orthographic PHMM and DBN previously described.

All the results presented in this section are quite remarkable because they suggest that
orthographic learning models can outperform systems specifically designed for the task of
phonetic alignment, like ALINE (Kondrak 2000) and its variations (Kondrak 2009), given
enough training data.

5.2 Comparison

Both our models, DAY6 and DAY6b, when using global alignment as well as local
alignment, consistently outperform ALINE (Kondrak 2000), PHMM (Mackay and Kondrak
2005) and DBN (Kondrak and Sherif 2006) in terms of 11-point interpolated average
precision in the task of cognate identification. Table 2 shows the proportion of cognate per
language pair and a comparison of all the systems considered including our best results
produced by DAY6 and DAY6b when utilising NW and SW. It does not include the method
proposed by Kondrak (2009) as only the averaged 11-point interpolated average precision,
0.681, was reported. We have used as a baseline NEDIT, the edit distance with unitary costs
(Levenshtein 1966, Gusfield 1997) normalised by the length of the longer string. The 11-point

BDD-A9848 © 2010 Universitatea din Bucuresti
Provided by Diacronia.ro for IP 216.73.216.221 (2025-10-16 17:57:56 UTC)



80 Antonella Delmestri and Nello Cristianini

interpolated average precision achieved by ALINE (Kondrak 2000), PHMM (Mackay and
Kondrak 2005) and DBN (Kondrak and Sherif 2006) is reported as in the literature.

DAYG6b using local alignment produces an averaged 11-point interpolated average
precision approximately 5% higher than DBN and PHMM, 18% higher than ALINE and 28%
higher than NEDIT. Not only the average of the 11-point interpolated average precision of our
sample is higher, but also the standard deviation and variance are much lower, suggesting that
our system is also more consistent in its performance across the different language pairs. This
is confirmed by a higher median which indicates the central tendency. When comparing the
results produced by PHMM and DBN with each other, it is interesting to observe that while
the average of the 11-point interpolated average precision of PHMM and DBN are very close,
DBN’s standard deviation and variance are much lower, showing a better data distribution.

Table 2: 11-point interpolated average precision of several methods

Languages pg)‘;)go":t‘itzn NEDIT | ALINE | PHMM | DBN Dl\‘?“,é‘s Dé*‘:,“ D‘mb D‘;&f"
English German 0.590 0.907 0.912 0.930 0.927 0.932 0.937 0.929 0.934
French Latin 0.560 0.921 0.862 0.934 0.923 0.927 0.930 0.921 0.924
English Latin 0.290 0.703 0.732 0.803 0.822 0.826 0.833 0.823 0.826

German Latin 0.290 0.591 0.705 0.730 0.772 0.741 0.759 0.770 | 0.772
English French 0.275 0.659 0.623 0.812 0.802 0.811 0.815 0.836 | 0.830
French German 0.245 0.498 0.534 0.734 0.645 0.763 0.776 0.796 | 0.788
Albanian Latin 0.195 0.561 0.630 0.680 0.676 0.685 0.683 0.690 | 0.721
Albanian French 0.165 0.499 0.610 0.653 0.658 0.636 0.607 0.607 | 0.625
Albanian German 0.125 0.207 0.369 0.379 0.420 0.508 0.519 0.553 0.552
Albanian English 0.100 0.289 0.302 0.382 0.446 0.463 0.487 0.503 0.518

Average 0.284 0.584 0.628 0.704 0.709 0.729 0.735 0.743 0.749
Standard deviation 0.168 0.231 0.193 0.194 0.176 0.159 0.158 0.149 | 0.144
Variance 0.260 0.054 0.037 0.038 0.031 0.025 0.025 0.022 | 0.021
Median 0.284 0.576 0.627 0.732 0.724 0.752 0.768 0.783 0.780

We have used the same source for the training dataset and the same test dataset that Kondrak
and co-workers have used in the design of PHMM (Mackay and Kondrak 2005) and DBN
(Kondrak and Sherif 2006). However, there are several aspects that differentiate considerably
our learning approach, including the dimension of the training dataset used, its quality and its
meaningfulness. In fact we have employed less than 1% of the data they utilised and we have
considered only word pairs reported by Dyen et al. (1992) as certain cognates. Moreover, we
have automatically aligned the cognate pairs from which the system has to learn, using a
substitution matrix that incorporates some linguistic knowledge in an attempt to generate a
meaningful training dataset. It is also worth noting that our system accommodates quite well
the Albanian language that makes the test dataset challenging. In fact Albanian constitutes its
own branch in the Indo-European language family and it is not part of the language families
with which our system has been trained.

6. Conclusions

We have developed a learning system for the task of cognate identification and we have
shown its superior performance when compared with the best phonetic and orthographic
systems previously proposed in the literature. Our results reinforce the hypothesis that
orthographic learning systems may recognise traces of sound correspondences left in the
words orthography and can perform better than phonetic static models. This idea is very
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encouraging considering that phonetic transcriptions are very difficult to produce and
frequently performed by hand with the consequent loss of time and the possible lack of
accuracy and uniformity. Our PAM-like matrices, together with our new family of similarity
measures, may help to identify distant relationships between languages, where controversies
still exist, and to analyse less studied language families.

Our future objective is to continue investigating substitution matrices for the tasks of
cognate recognition and word similarity. In particular, we would like to study the influence of
the training dataset dimension on our system performance. Another step forward would be to
apply our methodology to the investigation of language evolution.
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