

METALIMBAJUL ÎN SISTEMUL

LIMBAJELOR DE PROGRAMARE

Olimpia VARGA

Universitatea „Ovidius” din Constanţa

olimpia_varga@yahoo.com

 Abstract: In this paper we try to clarify the mechanisms of programming languages

starting from the general concepts, the alphabet and vocabulary, syntax and the semantics of

artificial languages compared to natural languages. Within programming languages we

analyze metalanguage elements, the combinations of letters, numbers, word categories, the

set of symbols and the commands used in the program.

Keywords: programming language, semantics, syntax, symbol, metalanguage

Un specialist în informatică sau un filolog specializat în lingvistică

computaţională are imaginea mecanismelor de funcţionare a limbajelor de

programare, după modelul limbilor naturale și după cum le este foarte

familiar şi metalimbajul aferent.

Pentru nespecialişti, cele două tipuri de sisteme 1 – natural şi

artificial –, precum şi terminologia „gramaticii” după care se organizează

fiecare nu îşi dezvăluie specificul şi modelele de autoreglare chiar atât de

uşor. Ceea ce obturează suplimentar imaginea reluată a limbajelor, de la

natural la artificial, este accepţia oarecum particulară a terminologiei de

specialitate.

Dacă termeni precum „semantică”, „sintaxă” etc. sunt relativ unitari

în interpretarea ambelor tipuri de sisteme, există alţi termeni, precum

„dicţionar”, „bibliotecă”, „limbaje de interogare”2 etc. cu înţelesuri speciale

în limbajele generate de inteligenţa artificială. În plus, aceasta din urmă îşi

dezvoltă limbajele într-un ritm extrem de rapid, procesul de simplificare a

procedurilor de analiză fiind invers proporţional cu complexitatea

operaţiilor logice şi comunicaţionale pe care sunt capabile să le realizeze.

Limbajul artificial este un sistem de semne nonlingvistice, clare,

care pot fi înţelese pe baza unor convenţii, la fel ca sistemul de semne dintr-o

limbă naturală. Acesta este motivul pentru care a fost „creat în mod

1 Sistemul este definit ca fiind compus dintr-o sintaxă şi o semantică, sintaxa derivând

formele de suprafaţă produse de regulile de bună formare, iar semantica - o formă logică

dedusă prin intermediul regulilor de compunere. Ansamblul constituit dintr-o formă de

suprafaţă şi o formă logică constituie semnificaţia frazei (prin opoziţie cu sensul enunţului).

Cf. Jacques Moeschler, Arme Reboul, 1999, Dicţionar Enciclopedic de Pragmatică.

Coordonarea traducerii şi prefața: Carmen Vlad, Liana Pop, Cluj-Napoca: Editura Echinox,

p. 21.
2 Interogarea este operația prin care se obțin datele dorite dintr-o baza de date, selectate

conform unui anumit criteriu. Întrucât operația de interogare este cea mai importantă

operație de manevrare a datelor, de multe ori limbajele de manevrare a datelor sunt denumite

‘limbaje de interogare’. Deci, limbajul de interogare este un limbaj de programare specific

pentru manipularea datelor în cadrul bazelor de date relaționale.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

intenționat, de unul sau mai mulţi indivizi pentru a servi la realizarea

comunicării într-unul sau altul din domeniile de activitate umană”3, după

anumite reguli, în vederea fixării, prelucrării şi transmiterii de informaţii.

După cum se vede, această definiţie a limbajului este valabilă atât pentru

limbajele naturale, adică limbile formate în procesul comunicării sociale,

cât şi pentru limbajele artificiale, construite de om în procesul cunoaşterii

ştiinţifice.

Sistemul de semne este guvernat de trei tipuri de reguli:

a) Reguli sintactice, care vizează legăturile dintre semne.

 Exemplu: regulile legăturilor dintre diversele părţi de

propoziţie.

b) Reguli semantice, care vizează legătura dintre semne şi

semnificaţiile lor.

 Exemplu: regulile de traducere.

c) Reguli pragmatice, care stabilesc normele de utilizare a

semnelor de către oameni.

Limbajul formal este „limbajul artificial cu o descriere riguroasă,
matematică, bazat pe un sistem formal de tip gramatică sau automat, ce pot fi

folosite ca modele ale limbajelor de programare.”4

Limbajul maşină este „limbajul programelor în format direct

executabil al unui calculator, constituind cel mai de jos nivel pe care poate

fi programat un calculator. Un program în limbajul maşină este o secvenţă

de instrucţiuni şi zone de date, care pot fi imediat executate de unitatea

centrală de prelucrare. Pentru reprezentările externe ale calculatorului, un

program în limbajul maşină poate fi dat ca şir de cifre binare, organizate pe

locaţii ale memoriei, folosind denumiri simbolice ale instrucţiunilor.”5

Limbile artificiale sunt limbi a căror vocabular şi gramatică au fost

inventate de către un om sau un grup, spre deosebire de limbile naturale,

apărute în decursul istoriei.

Limbile artificiale pot fi clasificate în:

Limbi auxiliare inventate pentru a fi folosite în comunicarea dintre oameni

pe tot globul. Exemplu: limba Esperanto;

Limbi fictive plăsmuite în opere artistice, întâlnite în literatură sau film cu

personaje imaginare;

Limbi experimentale create de lingviști ca metodă de cercetare;

Limbi secrete folosite pentru codificarea datelor;

Limbi inventate doar pentru amuzament. Exemplu: limba „păsărească”.

 Noţiuni generale privind limbajele de programare

 Calculatoarele electronice şi „limbajele de programare” joacă un rol

foarte important în dialogul om-calculator.

3 Cf. Dicţionar de Informatică, 1981, Bucureşti: Editura Ştiinţifică şi Enciclopedică, p. 193.
4 Ibidem, p. 195.
5 Ibidem.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

 Limbajele de programare fac parte din setul de limbaje artificiale

create de om, care servesc la exprimarea, cu ajutorul calculatorului, a

algoritmului de rezolvare a unei probleme, folosind o serie de comenzi

executabile. Algoritmul indică modul de prelucrare, pas cu pas, a datelor

primare până la obţinerea rezultatelor finale.

Un program este reprezentarea unui algoritm într-un limbaj de

programare şi poate fi privit ca un transformator de aserţiuni care descrie

proprietăţile datelor de intrare şi a rezultatelor.6

Un limbaj de programare este un set bine definit de caractere şi

simboluri, de expresii şi reguli sintactico-semantice privind comenzile

folosite pentru scrierea unui program pe un computer. Limbajul de

programare este un instrument de dialog, interfața între om şi calculator.

Limbajele de programare servesc la transformarea modului de

rezolvare a unei probleme într-un format accesibil calculatorului. Folosind

un limbaj de programare, specialistul în informatică va crea un soft, care va

descrie, în liniile de comandă, calea de urmat pentru rezolvarea unei

probleme.

Limbajele de programare prin biblioteca de comenzi7, pe care o

oferă, dau posibilitate programatorului să specifice în programul sursă,

procedurile pe care trebuie să le execute calculatorul în derularea soft-ului.

Toate limbajele de programare se bazează pe un set de simboluri

elementare, numit alfabetul limbajului cu literele mari şi mici ale

alfabetului latin, cu cifrele sistemului zecimal, cu anumite caractere

speciale: + - * /, %....

Aceste simboluri sunt asamblate în cuvinte-cheie sau expresii care

formează vocabularul limbajului (variabile, constante, instrucţiuni, funcţii,

comenzi). Ansamblul regulilor prin care se construiesc instrucţiunile

constituie gramatica limbajului.

Exprimarea regulilor gramaticale din limbajele de programare se

realizează cu ajutorul unui metalimbaj. Elementele de metalimbaj care apar

în manualul de utilizare al produsului-program sunt:

 Cuvintele rezervate,8 scrise cu majuscule şi folosite sub numele de

comenzi, clauze, funcţii.

 Exemplu: IF(...), FOR, COPY, PRINT.

 Cuvintele-utilizator, scrise cu minuscule şi folosite de programatori

în declaraţiile de variabile şi în stabilirea câmpurilor din structura unică a

unui fişier.

 Exemplu: numepren (nume prenume), cnp (codul numeric personal), tel

(telefon).

 Parantezele drepte „[]” încadrează o declaraţie opţională.

6 Ibidem, p. 266.
7 Reamintim că în metalimbajul programatic, termenul de „bibliotecă“ nu coincide cu cel din

lexicul uzual, însemnând „corpus”, „inventar” de termeni, de texte etc.
8 Prin „cuvânt rezervat” se înțelege un şir de caractere alfanumerice, care constituie un

simbol cu semnificaţie particulară într-un limbaj de programare şi exprimă o comandă, o

clauză etc., fără a putea fi folosit ca identificator al datelor. Cf. DI, 1981, p. 109.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

Exemplu:

 Comanda SORT TO permite sortarea, ordonarea datelor într-un

tabel.

 SORT TO <fişier> ON <câmp1> [/A /D] [/C]

 [, <câmp2>[/A /D] [/C] ...]

În sintaxa comenzii de sortare, datele din tabelul numit <fişier> vor

fi aranjate după primul câmp <câmp1>, apoi după cel de-al doilea câmp

<câmp2>, din structura de fişier, în ordine ascendentă/descendentă [/A|/D],

sau în ordine alfabetică [/C], după literele mari sau mici ale alfabetului.

 Acoladele „{ }” sau linia verticală „|”, în liniile de comandă din

cadrul fişierelor program sunt alte elemente ale limbajului. Pentru o cât mai

mare claritate, vom folosi un singur element: sau „{ }”, sau “|”.

Exemplu: Ordonare ascendentă sau descendentă a datelor:

 [ASCENDING / DESCENDING]

Programul 9 pentru calculator reprezintă un ansamblu de

instrucţiuni scrise cu ajutorul unui limbaj de programare. Succesiunea de

instrucţiuni de pe liniile de comandă, dintr-un fişier de tip program, descriu

paşii pe care trebuie să-i execute calculatorul în scopul rezolvării unei

probleme.

Instrucţiunea10 reprezintă descrierea unei acţiuni codificate, care se

transmite calculatorului cu ajutorul unui limbaj de programare. Execuţia

instrucţiunii, într-un interval de timp finit şi cu un efect bine definit, este

realizată de către un procesor. Fiecare limbaj de programare conţine

anumite tipuri de instrucţiuni: de memorare a valorilor, de atribuire, de

ciclare, de control, de salt, de transfer de date de intrare/ieşire etc.

În programare, instrucţiunea de transfer prezintă forma de transfer

condiţionat şi de transfer necondiţionat, folosind cuvintele-cheie IF şi

THEN.

Exemplu: „IF condiţie, THEN secvenţă, ELSE secvenţă”.

„IF condiţie, THEN secvenţă”.

 Ansamblul activităţilor de documentare, proiectare, dezvoltare,

implementare şi întreţinere a programelor în elaborarea unui produs-

program poartă numele de programare. Programul scris de un analist-

programator se numeşte program-sursă. Fişierul program-sursă (notat

nume-fişier.prg) trebuie compilat, moment în care calculatorul citeşte liniile

de comandă şi rulat, transformat în format executabil (notat nume-

fişier.exe). Formatul de tip executabil rezultă prin traducerea sursei, cu

ajutorul programelor speciale numite interpretoare sau compilatoare.

9 Cf. Dicționar de matematică și cibernetică în economie, București: Editura Științifică și

Enciclopedică, 1979, s.v. Program - Plan al procesului de prelucrare automată a

informației la calculatorul electronic.
10 Comandă dată unui calculator pentru îndeplinirea unor operații. Cf. Mircea Regneală,

2001, Dicționar explicativ de biblioteconomie și știința informării, vol. I. București: FABR,

p. 317.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

În cazul problemelor complexe, activitatea de creare a programelor

presupune mai mult timp şi implicarea unui număr mai mare de specialişti,

iar rezultatul activitităţii este produsul-program.

Un produs-program-procedural cuprinde ansamblul de programe-

procedurale cu fişierele sursă, fişierele executabile, fişierele bază de date şi

Manualul de utilizare cu documentaţia pentru implementarea şi folosirea

programului.

Manualul de utilizare accesat cu tasta F1-Help, cuprinde fişierele

document cu descrierea algoritmului de rezolvare, modul de implementare

şi de exploatare al soft-ului.

În programul-sursă printre liniile de comandă sunt inserate, cu

ajutorul semnelor „#”, * (sau alte simboluri), liniile comentariu, care nu

influenţează descrierea structurii datelor de intrare/ieşire, a funcţiilor sau

execuţia programului.

La primele limbaje de programare, trecerea de la programele sursă

la programele executabile se realiza prin comenzi distincte, în care

specificam ordinea de efectuare a operaţiilor. În momentul actual,

programatorii se orientează către medii de programare.

Mediile de programare reprezintă pachete de programe, care

asigură integrarea următoarelor funcţii: introducerea şi editarea programului

sursă, interpretarea sau compilarea, editarea de legături, încărcarea şi

lansarea în execuţie, plus depanarea programului. Astăzi, majoritatea

limbajelor de programare sunt integrate în medii de programare având

implicit instalate un editor de texte, un interpretor, un depanator de

programe, care oferă fişierelor sursă o gestionare completă şi o informare

rapidă prin sistemul HELP.

Alfabetul şi vocabularul unui limbaj de programare

Orice limbaj de programare are la baza două elemente:

a) Un alfabet, alcătuit din literele alfabetului englezesc, de la A la

Z, majuscule şi minuscule, cu un total de 52 caractere.

b) Un set de caractere, format din cifrele arabe (de la 0 la 9, în total

10 caractere) şi caracterele speciale (. , ; = < > # $ % + - * / " ' ()).

Ordonarea simbolurilor alfabetului se face pe baza codurilor

numerice corespunzătoare caracterelor respective. Caracterele din alfabetul

limbajului permit compunerea cuvintelor care formează vocabularul

limbajului.

În limbajele de programare există următoarele categorii de cuvinte:

a) Cuvintele cheie, care au un înţeles clar într-un context precizat şi

desemnează nume de variabile, instrucţiuni, funcţii-condiţie etc.;

b) Cuvintele rezervate ale limbajului sunt folosite doar în scopul pentru care

au fost definite. Avantajele utilizării acestei categorii de cuvinte sunt

următoarele:

 - programul devine mai facil;

 - măresc viteza de compilare a programului (citirea liniilor de

program);

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

 - erorile sunt depistate mai repede.

c) Cuvintele definite de utilizator sunt cuvinte folosite pentru a desemna

diverse elemente din program: numele de câmpuri din structura de fişier,

numele de funcţii, numele de proceduri, variabile, numele de fişiere.

Sintaxa şi semantica unui limbaj de programare

Dispozitivele periferice de intrare/ieșire ale unui sistem de calcul

permit preluarea, prelucrarea, stocarea, transmiterea, afișarea și tipărirea

datelor unui utilizator sau unui grup de utilizatori. Echipamentele periferice

folosite pentru introducerea datelor în sistem sunt clasica tastatură, scanner-

ul, creionul electronic etc. Cele mai folosite metode pentru transmiterea

datelor sunt: poşta electronică (e-mail), software de tip messenger sau chat,

forum-urile electronice, skype pentru video-conferinţe, reţelele de

socializare, programele audio pentru Internet.

Dacă dorim să scriem o aplicaţie pentru un sistem electronic de

calcul trebuie să stabilim limbajul de programare pe care îl vom folosi şi,

implicit, toate comenzilor din biblioteca de comenzi a limbajului, setul de

caractere, modul în care vom realiza analiza sintactică şi semantică a

textului în fişierul program.

Un program este format din atomi lexicali (tokens) şi separatori. Un

atom lexical este cea mai mică unitate sintactică cu înţeles de sine stătător

într-un context precizat.

În programul sursă, analiza lexicală este acea fază a procesului de

analiză care are drept scop identificarea atomilor lexicali din care e compus

programul. Categoriile de tokeni întrebuinţaţi sunt: simbolurile speciale,

identificatori, etichete şi literali.

Sintaxa unui limbaj de programare

Un limbaj de programare este un set de reguli, simboluri şi cuvinte

speciale folosite pentru a scrie un program. Regulile sunt valabile atât

pentru gramatică (sintaxă), cât şi pentru semantică (semnificaţie).

Cu ajutorul unui limbaj de programare şi urmând anumite reguli,

vom scrie în fişierul program-sursă liniile de comandă formate din comenzi.

O comandă conţine numele comenzii cu sintaxa comenzii alcătuită din

cuvinte combinate, simboluri şi parametri.

Sintaxa unui limbaj de programare reprezintă un set de reguli care

guvernează alcătuirea propoziţiilor dintr-un limbaj 11 . Prin sintaxă

determinăm dacă o anumită instrucţiune este scrisă corect sau nu, în

privinţa asocierii enunţurilor sau părţilor de enunţ.

Sintaxa limbajelor de programare este foarte rigidă, nu acceptă

ambiguităţi şi este alcătuită dintr-un set de reguli care arată exact ce

combinaţii de litere, numere şi simboluri pot fi folosite în program.

Remarcăm aici o pregnantă diferenţa faţă de sintaxa limbilor naturale, unde

11 Cf. DI, 1981, p. 312.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

părţile de propoziţie sau propoziţiile subordonate se pot suprima, permuta

etc., desigur, între anumite limite și după anumite reguli, specifice fiecărei

limbi.

Exemplu:

Eroarea de sintaxă (syntax errors) este generată la orice scriere

incorectă şi incompletă a unei comenzi, a unui cuvânt, a unei virgule, a unui

parametru de comandă.

Sintaxa unui limbaj de programare poate fi descrisă în diverse

moduri, unul dintre acestea fiind notaţia BNF (Backus-Naur Form).

Notaţia BNF a fost utilizată prima dată la descrierea sintaxei

limbajului ALGOL (în cadrul raportului ALGOL60, apărut în 1963). În

cadrul BNF, sunt folosite metasimboluri, simboluri terminale şi simboluri

neterminale.

Metasimbolurile sunt simbolurile care fac parte din mecanismul de

descriere a limbajului.

Exemple de metasimboluri: „<”, „ >”, „ ½”, „::=“

Simbolul „½” semnifică o alternativă.

Simbolul „::=” îl vom citi „se defineşte astfel".

Simbolurile terminale sunt cuvintele care desemnează comenzile-

condiţie în proceduri sau în buclele de program.

Exemplu: FOR, WHILE, DO.

Simbolurile neterminale sunt cuvintele încadrate între semnul mai

mic „<” şi semnul mai mare „>” fiind definite în program.

Exemplu: <variabila>, <identificator>, <instrucţiune>.

Sintaxa unui identificator în BNF se prezintă în trei moduri

alternative, folosind semnele mai mic şi mai mare.

- Un identificator este fie o <litera>, fie un <identificator> urmat

de o <cifra>, fie un <identificator> urmat de o <litera>.

Exemplu:

<identificator>::=<litera>½<identificator><cifra>½<identificator><lite

ra>

Unde: <litera>::=a½b½...½z½A½B½...½Z

 <cifra>::=0½1½2½...½9

- Rezultă că un identificator poate să se identifice cu: o singură

literă „a”; o literă urmată de o cifră „b2”; multe litere şi cifre „alo2a3”.

- Descrierea sintaxei instrucţiunii condiţionale IF- THEN în

notaţia BNF.

Exemplu: <instrucţiune IF>::= IF  condiţie  THEN.

Semantica unui limbaj de programare

Semantica s-a dezvoltat ca ramură de sine stătătoare a lingvisticii

abia în secolul al XX-lea. Termenul de „semantică”, introdus în literatura de

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

specialitate de către Michel Bréal12, în 1883, a fost folosit în înţelesul actual

începând cu lucrările lui Charles William Morris13. În cadrul semanticii, el a

cercetat în special legăturile dintre semnele verbale şi ceea ce este înţeles

prin ele, deosebind-o de sintaxă, care studiază relaţiile semnelor între ele, şi

deosebind-o, de asemenea, de pragmatică, disciplină care se ocupă cu

studiul relaţiilor dintre semne şi utilizatorul lor. Lingvistica structuralistă a

preluat această diferenţiere şi a dezvoltat mai departe studiul semnificaţiei

simbolurilor verbale. În cadrul semanticii, studiul semnificaţiei cuvintelor

se numeşte semasiologie, iar studiul denumirilor, onomasiologie, termeni

care se regăsesc numai parţial în limbajele de programare.

 Sensul din aceste limbaje artificiale se referă la legăturile dintre

cuvintele, semnele şi parametri unei comenzi.

 Semnificaţia cuvintelor se referă la relaţia dintre semne cu întreg

programul.

O preocupare importantă a semanticii, tradiţională, de altfel, o

constituie transformarea în formule logice a exprimărilor naturale într-o

anumită limbă, după o metodă care a fost dezvoltată de Richard Montague.

Spre deosebire de fonetică, morfologie şi sintaxă, obiectul de studiu al

semanticii „... est l’étude du sens des mots, des phrases et des énonces”14.

Domeniile de cercetare ale semanticii din limbajele de programare

coincid, în bună parte, cu cele din lingvistica generală aplicabilă limbilor

naturale.

Domeniile de cercetare ale semanticii sunt15:

 Semantica lexicală are ca obiect studiul semnificaţiei cuvintelor şi

al structurii interne a vocabularului în întregime.

 Semantica propoziţională cercetează felul în care, din sensul

fiecărui cuvânt în parte rezultă unităţi sintactice mari (fraze) cu semnificaţie

proprie.

 Semantica textelor analizează combinaţia propoziţiilor reale sau

ipotetice, din care rezultă o descriere, o naraţiune sau o argumentaţie

coerentă.

 Semantica discursivă are ca obiect studiul exprimărilor diverselor

persoane care se găsesc angajate într-o discuţie, convorbire banală sau într-

o dispută ştiinţifică.

Relaţiile între limbă şi gândire, respectiv între limbă şi lumea existentă

ne permit să amintim şi de alte domenii ale semanticii:

 Semnificaţia cognitivă se referă la relaţia dintre limbă şi gândire. O

exprimare verbală poate fi înţeleasă doar în măsura în care ea reconstruieşte

structura gândirii celui ce o exprimă.

12 Michel Bréal, 1883/2012, Essai de Sémantique, Paris: Hachette.
13 Charles William Morris, 1949, Foundations of the Theory of Signs, Chicago: University

of Chicago Press.
14 Irène Tamba-Mecz, 1988, La sémantique, Paris, PUF, p. 7.
15 http://ro.wikipedia.org/wiki/Semantic%C4%83.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

 Semnificaţia informaţională, denumită şi teorie referenţială, este

disciplina conform căreia rolul principal îl joacă relaţia dintre limbajul

descompus în unităţi informaţionale şi persoana referentă.

 Semnificaţia pragmatică studiază relaţiile între sensul lingvistic al

unei exprimări şi un anumit context.

În cazul limbajelor de programare, semantica reprezintă un set de

reguli care determină semnificaţia instrucţiunilor scrise într-un fişier

program.

Semantica comenzii, de pildă, arată sensul cuvintelor dintr-o

comandă, având ca scop clarificarea sensului şi a semnificaţiei noţiunilor

complexe, derivate din simbolurile cele mai simple ale limbajului,

sprijinindu-se pe regulile sintaxei, fără a se identifica însă cu aceasta.

În logică şi informatică se folosesc termenii de „Semantică

formală” sau „Semantica limbajului de programare”. Între semantică şi

sintaxă există acelaşi raport ca între fond şi formă.

Analiza textului într-un program sursă

Analiza textului-sursă, adică a liniilor de comandă din programul-

sursă, constă în: analiza lexicală, analiza sintactică şi analiza semantică a

acestuia.

Analiza lexicală este prima operaţie pe care o facem asupra

fişierului program-sursă, considerat un şir de caractere care conţine

subşiruri de caractere, numite „atomi lexicali”, cu operatori (+,-,<,>),

cuvinte-cheie sau cuvinte rezervate, constante (10,1,2,3, 23, A, ANA),

identificatori şi separatori.

 Analizorul lexical execută următoarele operaţii:

- detectează în programul-sursă subşirurile care respectă regulile

de formare a atomilor lexicali;

- clasifică subşirurile, adică identifică clasa de care aparţin aceste

subşiruri;

- traduce subşirurile în atomi lexicali;

- memorează atomii în tabela de simboluri.

Analiza sintactică a şirului atomilor lexicali identifică structurile

sintactice - expresii, liste, instrucţiuni, proceduri - şi generează o descriere

structurală a acestuia. În cazul în care şirul de intrare este corect sintactic,

apare arborele sintactic (de derivare) sau, în caz contrar, un mesaj de

eroare. Arborele sintactic descrie relaţiile de separare ori de incluziune

dintre structuri.

Analiza semantică foloseşte arborele sintactic, creat în faza de

analiză sintactică, pentru a extrage informaţii privind apariţiile în

programul-sursă a obiectelor purtătoare de date (tipuri de date, variabile,

proceduri, funcţii) şi pentru a atăta necesitatea utilizării lor. Odată cu

parcurgerea arborelui sintactic are loc şi generarea codului intermediar.

Acesta reprezintă un şir de instrucţiuni simple, cu format fix, în care

codurile operaţiilor sunt asemănătoare cu codurile maşină corespunzătoare,

ordinea operaţiilor respectă ordinea execuţiei (conform apariţiei lor în

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

programul sursă), iar operanzii sunt prezentaţi sub forma variabilelor din

programul-sursă (nu sub forma de adrese de memorie).

În practică, analiza semantică are loc în paralel cu cea sintactică,

prin asocierea acţiunilor analizorului sintactic cu anumite structuri de date

ce reprezintă atribute ale componentelor sintactice.

Generarea codului obiect presupune alocarea locaţiilor de memorie

şi a registrelor 16 unităţii centrale pentru variabilele programului şi

înlocuirea codurilor de operaţii din codul intermediar cu codul maşină.

Componentele de bază (lexicală, sintactică, semantică) sunt asistate

pe tot parcursul compilării de următoarele două module:

a) Modulul de tratare a erorilor prezintă o colecţie de proceduri care

sunt activate ori de câte ori este detectată o eroare în timpul operaţiilor de

analiză.

În funcţie de faza de analiză în care se află programul, erorile pot fi

lexicale, sintactice sau de semantică. Modul de tratare a erorilor afişează

mesajele de diagnostic relativ la eroarea depistată şi iau decizii privind

metoda de continuare a traducerii: fie se continuă compilarea, ignorând

elementul ce conţine eroarea, fie se încearcă corectarea erorii sau se

întrerupe traducerea.

b) Modulul de gestiune a tabelelor prezintă o colecţie de proceduri

care creează şi actualizează baza de date a compilatorului şi conţine

informaţii proprii compilatorului (generate la implementare şi constituite

din mecanismele de descriere a analizei lexicale, sintactice şi semantice) şi

informaţii ce aparţin programului–sursă, care se traduce (identificatorii,

constantele, cuvintele-cheie), memorate în tabela de simboluri.

Gestionarea tabelei de simboluri se constituie în funcţie de: modul de

reprezentare al acesteia, caracterul general al tabelei, tipul limbajului din

care se traduce programul-sursă şi convenţiile alese pentru reprezentarea

atributelor. De obicei, în faza de analiză lexicală, la întâlnirea unui nume

nou, acesta este întrodus în tabela de simboluri, reţinându-se şi adresa

intrării. Orice referire ulterioară la acest nume actualizează informaţia din

tabela corespunzătoare acestui nume, verificându-se şi consistenţa utilizării

acestuia (în cadrul analizei semantice). La generarea codului, atributele

numelui determină lungimea zonei de memorie alocată acestuia. Atributele

numelui pot servi şi în faza de tratare a erorilor.

Translatorul programelor de calculator

Translatorul este programul care traduce fişierele-sursă scrise într-

un anumit limbaj de programare, într-un program echivalent dintr-un alt

limbaj, acesta numindu-se „program destinaţie”.

Translatoarele se clasifică în:

16 Registrul este un dispozitiv destinat memorării unui vector binar. Registrul de adrese

păstrează adresa curentă folosită pentru efectuarea accesului la o memorie. Cf. DI, 1981, p.

287.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

 Compilatoare - pentru acestea programul destinaţie se numeşte

program obiect sau cod obiect, fiind apropiat de codul maşină. În cazul

limbajelor de nivel înalt, translatorul poartă denumirea de compilator sau

interpretor.

- Compilatoarele sunt translatoare care citesc tot programul scris în

limbajul cod sursă şi îl traduc în cod maşină.

- Interpretoarele sunt translatoare care citesc pe rând fiecare

instrucţiune din programul sursă, după care o traduc şi o execută.

 Asambloare – sunt compilatoarele limbajelor de asamblare

folosite pentru traducerea mnemonicilor din limbajul de asamblare în

limbajul maşină.

În aceste două cazuri, traducerea este urmată, de obicei, de editarea

de legături, înainte de execuţia propriu-zisă a programului. În această fază,

codul executabil se constituie prin legarea codului-obiect rezultat din

traducere cu alte module obiect (rezultate ale unor compilări anterioare sau

cele existente în bibliotecile de comenzi).

 Interpretoarele realizează execuţia programului sursă instrucţiune

cu instrucţiune.

 Preprocesoarele traduc programele-sursă din limbaje de nivel

înalt în programe destinaţie tot în limbaje de nivel înalt.

 Cross-compilatoarele sau cross-asambloare generează pe un

calculator „gazdă” un cod obiect pentru un alt calculator-obiect (care are

memorie mică şi nu poate implementa programul de traducere);

 Compilatoarele incrementale reprezintă o combinaţie între

compilator şi interpretor, care foloseşte secvenţe din programul-sursă cu o

anumită independenţă sintactică şi semantică pentru a le executa

interpretativ.

Execuția limbajelor de programare

Pentru executarea unui program scris într-un limbaj oarecare,

există, în principiu, două abordări: compilare sau interpretare. La compilare,

compilatorul transformă programul-sursă, în totalitatea sa, într-un program

echivalent scris în limbaj maşină, care apoi este executat.

La interpretare, interpretorul ia prima instrucţiune din programul-

sursă, o transformă în limbaj maşină şi o execută; apoi trece la instrucţiunea

a doua şi repetă aceleaşi acţiuni. Unele limbaje se pretează bine la

compilare; de exemplu, limbajele clasice: Pascal, C, C++, altele sunt

interpretate, de exemplu, SQL, PHP.

Multe limbaje moderne combină compilarea cu interpretarea: codul

sursă este compilat într-un limbaj binar numit bytecode, care la rulare este

interpretat de către o maşină virtuală. De remarcat este faptul că unele

interpretoare de limbaje pot folosi compilatoare aşa-numite just-in-time,

care transformă codul în limbaj maşină chiar înaintea executării.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

Bibliografie

BÂRLEA, Petre Gheorghe, 2015, „Pentru o analiză semantică informatizată

a textului poetic”, în: Florina Loredana Streinu, Poezia Anei

Blandiana - o analiză semantic-textuală, Bucureşti: Editura Muzeul

Literaturii Române, pp. 5-10.

BÂRLEA, Petre Gheorghe, 2014, „Baza logică a structurilor condiționale

în limbile naturale”, în: Gabriela Duda (coord.), Cultura limbii.

Omagiu Doamnei Profesor Domnița Tomescu, Ploiești: Editura

Universității de Petrol și Gaze, pp. 53-64.

BRÉAL, Michel, 1883/2012, Essai de Sémantique, Paris: Hachette.

Dicţionar de Informatică (DI), 1981, Bucureşti: Editura Ştiinţifică şi

Enciclopedică.

Dicționar de matematică și cibernetică în economie, București: Editura

Științifică

și Enciclopedică, 1979.

MOESCHLER, Jacques; Reboul, Arme, 1999, Dicţionar Enciclopedic de

Pragmatică, Cluj-Napoca: Editura Echinox.

MORRIS, Charles William, 1949, Foundations of the Theory of Signs,

Chicago:University of Chicago Press.

REGNEALĂ, Mircea, 2001, Dicționar explicativ de biblioteconomie și

știința informării, vol. I. București: FABR.

TAMBA-MECZ, Irène, 1988, La sémantique, Paris: PUF.

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

Provided by Diacronia.ro for IP 216.73.216.172 (2026-01-27 21:10:40 UTC)
BDD-A24402 © 2016 Ovidius University Press

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

