Gauss-Seidel's Theorem for Infinite Systems of Linear Equations (II)

Béla Finta

The purpose of this paper is to extend the classical Gauss-Seidel theorem, known for finite linear systems, to infinite one. First of all we need some technical results [4].

1 Vector norms

Let
$$x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \\ \vdots \end{pmatrix}$$
 be a sequence of real numbers represented in the form of an

infinite column vector, and we denote by s the real linear space of these sequences. Let $p \in [1, +\infty)$ be a real number and define $l^p = \{x \in s \mid \sum_{i=0}^{\infty} |x_i|^p \text{ is convergent}\}$. It is well known that l^p is a real linear subspace of s and for every $x \in l^p$ the formula $\|x\|_p = \left(\sum_{i=0}^{\infty} |x_i|^p\right)^{1/p}$ defines a norm on l^p . In this way $(l^p, \|\cdot\|_p)$ is not only a normed linear space, but a Banach space, too. For p=1 and p=2 we reobtain the Banach space l^1 and the Hilbert space l^2 , respectively. In l^2 we will consider the standard scalar product given by the formula $(x,y) = \sum_{i=0}^{\infty} x_i y_i$ for every $x,y \in l^2$. For $p,q \in [1,+\infty)$ real numbers from p < q results $l^p \subset l^q$. If s_0 means the linear subspace of convergent sequences to zero then $l^p \subset s_0$ for every $p \in [1,+\infty)$. We also consider the linear subspace $l^\infty = \{x \in s \mid x \text{ is bounded}\}$. For every $x \in l^\infty$ the formula $\|x\|_\infty = \sup_{i \in \mathbb{N}} \{|x_i|\}$ defines a norm on l^∞ . In this way $(l^\infty, \|\cdot\|_\infty)$ is not only a normed linear space, but a Banach space, too. We have: $l^1 \subset l^2 \subset s_0 \subset l^\infty \subset s$. All

these spaces we will call vector spaces, the elements vectors and the above mentioned norms vector norms [1]. For this paragraph see also [4].

2 Matrix norms

Let $A=(a_{ij})_{i,j\in\mathbb{N}}$ be an infinite matrix of real numbers and we denote by M the real linear space of these infinite matrixes. Let $M^1=\left\{A\in M\mid \sup_{j\in\mathbb{N}}\sum_{i=0}^{\infty}|a_{ij}|\text{ is finite}\right\}$. Then M^1 is a real linear subspace of M and for every $A\in M^1$ the formula $\|A\|_1=\sup_{j\in\mathbb{N}}\sum_{i=0}^{\infty}|a_{ij}|$ defines a norm on M^1 called column norm. In this way $(M^1,\|\cdot\|_1)$ becomes not only a real linear normed space, but a Banach space, too. Let $p\in(1,+\infty)$ be a real number and define

$$M^{p} = \left\{ A \in M \mid \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} |a_{ij}|^{q} \right)^{\frac{p}{q}} \text{ is finite} \right\},\,$$

where q is a real number such that $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 1. The space M^p is a real linear subspace of M and for every $A \in M^p$ the formula

$$||A||_p = \left[\sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} |a_{ij}|^q\right)^{\frac{p}{q}}\right]^{\frac{1}{p}}$$

defines a norm on M^p . The space $(M^p, \|\cdot\|_p)$ is a Banach space.

For p=2 we obtain $M^2=\left\{A\in M\mid \sum_{i,j=0}^\infty a_{ij}^2 \text{ is finite}\right\}$. If we take on M^2 the

scalar product given by the formula $(A, B) = \sum_{i,j=0}^{\infty} a_{ij} b_{ij}$, where $A = (a_{ij})_{i,j \in \mathbb{N}}$ and $B = (b_{ij})_{i,j \in \mathbb{N}}$, then $(M^2, (\cdot, \cdot))$ will be a Hilbert space.

Let $M^{\infty} = \{A \in M \mid \sup_{i \in \mathbb{N}} \sum_{j=0}^{\infty} |a_{ij}| \text{ is finite} \}$. Then M^{∞} is a real linear subspace

of M and for every $A \in M^{\infty}$ the formula $||A||_{\infty} = \sup_{i \in \mathbb{N}} \sum_{j=0}^{\infty} |a_{ij}|$ defines a norm on M^{∞} , called row norm. In this way $(M^{\infty}, ||\cdot||_{\infty})$ becomes not only a normed linear space, but a Banach space, too.

Corollary 1. If for the matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ we have $a_{ij} = 0$ for i > n and j > n, $n \in \mathbb{N}$, then from theorem 1 we reobtain the results in the finite dimensional space \mathbb{R}^n [3].

All these spaces we will call matrix spaces and the above mentioned norms matrix norms. For this paragraph see also [4].

3 The compatibility of the vector and matrix norms

Let $x \in s$ be a sequence of real numbers, and $A = (a_{ij})_{i,j \in \mathbb{N}} \in M$ an infinite matrix of real numbers.

Definition 1. We will define the product $A \cdot x$ if for every $i \in \mathbb{N}$ the series $\sum_{j=0}^{\infty} a_{ij}x_j$ are convergent. In this case the result vector $y = A \cdot x$ is a column vector with

$$components \ y = \begin{pmatrix} \sum_{j=0}^{\infty} a_{0j}x_j \\ \sum_{j=0}^{\infty} a_{1j}x_j \\ \vdots \\ \sum_{j=0}^{\infty} a_{ij}x_j \\ \vdots \end{pmatrix}$$

Theorem 2. For every $p \in [1, +\infty] = [1, +\infty) \cup \{+\infty\}$ the vector norm $\|\cdot\|_p$ defined on l^p is compatible with the matrix norm $\|\cdot\|_p$ defined on M^p , i.e. $\|Ax\|_p \leq \|A\|_p \cdot \|x\|_p$ for every $x \in l^p$ and every $A \in M^p$.

Corollary 2. If for the matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ we have $a_{ij} = 0$ for i > n and j > n, $n \in \mathbb{N}$, then from theorem 2 we reobtain the results in the finite dimensional space \mathbb{R}^n [3].

For this paragraph see also [4].

4 The matrix norm subordinate to a given vector norm

For every $p \in [1, +\infty]$ and for every $x \in l^p$ and $A \in M^p$ we have $||Ax||_p \le ||A||_p$. $||x||_p$ according to theorem 2. If $x \ne \theta_{l^p}$ (the null element of the vector space l^p) then $\frac{\|Ax\|_p}{\|x\|_p} \leq \|A\|_p$ and we can define $\sup \left\{ \frac{\|Ax\|_p}{\|x\|_p} \mid x \in l^p \setminus \{\theta_{l^p}\} \right\}$. It is known that this formula defines a matrix norm on M^p , which we call the matrix norm subordinate to the vector norm $\|\cdot\|_p$ defined on l^p and we denote by $\|A\|_p^* = \sup \left\{ \frac{\|Ax\|_p}{\|x\|_p} \mid x \in l^p \setminus \{\theta_{l^p}\} \right\}$. It is immediately that $\|A\|_p^* \leq \|A\|_p$ for every $A \in M^p$.

Theorem 3. For $p \in \{1, +\infty\}$ we have $||A||_p^* = ||A||_p$.

Corollary 3. If for the matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ we have $a_{ij} = 0$ for i > n and j > n, $n \in \mathbb{N}$, then from theorem 3 we reobtain the results in the finite dimensional space \mathbb{R}^n [3].

We mention that for the author is unknown how can we calculate for $p \in (1, +\infty)$ the matrix norm subordinate to the vector norm $\|\cdot\|_p$ defined on l^p . For this paragraph see also [4].

The above presented vector and matrix spaces we used to extend the Jacobi's and Gauss-Seidel's methods, known like iterative numerical methods, from finite linear systems to infinite one [5], [6]. In this way we can study the linear stationary processes with infinite but countable number of parameters.

5 Gauss-Seidel's iterative method for infinite systems of linear equations

First let us remember the well known Banach fixed point theorem for Banach spaces:

Theorem 4. (Banach) Let $(X, \|\cdot\|_X)$ be a Banach space, and Φ a contraction (i.e. there exists a constant $\alpha \in (0,1)$ such that $\|\Phi(x) - \Phi(y)\|_X \leq \alpha \cdot \|x - y\|_X$ for every $x, y \in X$). Then for every $x^0 \in X$ the sequence $(x^k)_{k \in \mathbb{N}}$, generated by the recursion formula $x^{k+1} = \Phi(x^k)$, is convergent and has the limit point $x^* \in X$, which is the unique fixed point of the function Φ in X.

Let us consider the infinite system of linear equations Ax = b, where $A \in M$ and $x, b \in s$.

Definition 2. For a given $A \in M$ and $b \in s$ we will say that $x^* \in s$ is a solution of the infinite system of linear equations Ax = b if we have $Ax^* = b$.

This means, that all the series $\sum_{j=0}^{\infty} a_{ij} x_j^*$ are convergent and we have $\sum_{j=0}^{\infty} a_{ij} x_j^* = b_i$ for every $i \in \mathbb{N}$.

Let us suppose, that $a_{ii} \neq 0$ for every $i \in \mathbb{N}$. Then the equation $\sum_{j=0}^{\infty} a_{ij}x_j = b_i$ is equivalent with the equation

$$x_{i} = \frac{\sum_{\substack{j=0\\j\neq i}}^{\infty} a_{ij}x_{j}}{a_{ii}}, \text{ i.e.}$$

$$x_{i} = -\sum_{\substack{j=0\\j\neq i}}^{\infty} \frac{a_{ij}}{a_{ii}}x_{j} + \frac{b_{i}}{a_{ii}}.$$

So the initial system of linear equations Ax = b is equivalent with the following iterative system of linear equations: $x = B \cdot x + c$, where

Let us choose $x^0 \in s$ and we generate the sequence $(x^k)_{k \in \mathbb{N}} \subset s$ by the following iterative formula:

$$\begin{cases} x_0^{k+1} = -\sum_{j=1}^{\infty} \frac{a_{0j}}{a_{00}} x_j^k + \frac{b_0}{a_{00}} \\ x_1^{k+1} = -\frac{a_{10}}{a_{11}} x_0^{k+1} - \sum_{j=2}^{\infty} \frac{a_{1j}}{a_{11}} x_j^k + \frac{b_1}{a_{11}} \\ x_2^{k+1} = -\frac{a_{20}}{a_{22}} x_0^{k+1} - \frac{a_{21}}{a_{22}} x_1^{k+1} - \sum_{j=3}^{\infty} \frac{a_{2j}}{a_{22}} x_j^k + \frac{b_2}{a_{22}} \\ \vdots \\ x_i^{k+1} = -\sum_{j=0}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{\infty} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}} \\ \vdots \end{cases}$$

Consequently from the vector x^k we generate the vector x^{k+1} by the recursion formula $x^{k+1} = B_{GS}x^k + c$. Now we consider the following definition:

Definition 3. The matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ is l^{∞} diagonal dominant if there exists $\lambda \in (0,1)$ such that for every $i \in \mathbb{N}$ we have

$$\lambda \cdot |a_{ii}| > \sum_{\substack{j=0\\j\neq i}}^{\infty} |a_{ij}|.$$

It is immediately that A is l^{∞} diagonal dominant if and only if

$$\sup_{i \in \mathbb{N}} \sum_{\substack{j=0 \ j \neq i}}^{\infty} \left| \frac{a_{ij}}{a_{ii}} \right| < 1.$$

Theorem 5. If A is l^{∞} diagonal dominant then the iterative sequence $(x^k)_{k \in \mathbb{N}}$ is convergent in l^{∞} for every $x^0 \in l^{\infty}$. The limit point $x^* \in l^{\infty}$ is the unique solution of the linear system Ax = b.

For this result see also [6].

Here we present another proof for theorem 5.

Proof. Let us denote by $\lambda = \sup_{i \in \mathbb{N}} \sum_{\substack{j=0 \ j \neq i}}^{\infty} \left| \frac{a_{ij}}{a_{ii}} \right| < 1$. We prove by mathematical induction

method that $|y_k| \leq \lambda \cdot ||x||_{\infty}$ for every $k \in \mathbb{N}$, where $y = B_{GS} \cdot x$. Indeed,

$$|y_{0}| = \left| -\sum_{j=1}^{\infty} \frac{a_{0j}}{a_{00}} \cdot x_{j} \right| \leq \sum_{j=1}^{\infty} \left| \frac{a_{0j}}{a_{00}} \right| \cdot |x_{j}| \leq$$

$$\leq \sum_{j=1}^{\infty} \left| \frac{a_{0j}}{a_{00}} \right| \cdot ||x||_{\infty} = \left(\sum_{j=1}^{\infty} \left| \frac{a_{0j}}{a_{00}} \right| \right) \cdot ||x||_{\infty} \leq \lambda \cdot ||x||_{\infty}.$$

We suppose that $|y_j| \leq \lambda ||x||_{\infty}$ for every $j = \overline{0, k-1}$ and we prove that $|y_k| \leq$

 $\lambda \cdot ||x||_{\infty}$. Indeed,

$$|y_{k}| = \left| -\sum_{j=0}^{k-1} \frac{a_{kj}}{a_{kk}} \cdot y_{j} - \sum_{j=k+1}^{\infty} \frac{a_{kj}}{a_{kk}} \cdot x_{j} \right| \leq$$

$$\leq \sum_{j=0}^{k-1} \left| \frac{a_{kj}}{a_{kk}} \right| \cdot |y_{j}| + \sum_{j=k+1}^{\infty} \left| \frac{a_{kj}}{a_{kk}} \right| \cdot |x_{j}| \leq$$

$$\leq \sum_{j=0}^{k-1} \left| \frac{a_{kj}}{a_{kk}} \right| \cdot \lambda \cdot ||x||_{\infty} + \sum_{j=k+1}^{\infty} \left| \frac{a_{kj}}{a_{kk}} \right| \cdot ||x||_{\infty} =$$

$$= \left(\sum_{j=0}^{k-1} \left| \frac{a_{kj}}{a_{kk}} \right| \cdot \lambda + \sum_{j=k+1}^{\infty} \left| \frac{a_{kj}}{a_{kk}} \right| \right) \cdot ||x||_{\infty} \leq$$

$$\leq \left(\sum_{j=0}^{k-1} \left| \frac{a_{kj}}{a_{kk}} \right| + \sum_{j=k+1}^{\infty} \left| \frac{a_{kj}}{a_{kk}} \right| \right) \cdot ||x||_{\infty} \leq \lambda \cdot ||x||_{\infty},$$

because $\sum_{\substack{j=0\\j\neq k}}^{\infty} \left| \frac{a_{kj}}{a_{kk}} \right| \leq \lambda < 1$. Since $|y_k| \leq \lambda \cdot ||x||_{\infty}$ for every $k \in \mathbb{N}$ results that

$$||y||_{\infty} = \sup_{k \in \mathbb{N}} \{|y_k|\} \le \lambda \cdot ||x||_{\infty}.$$

This means that

$$||B_{GS}||_{\infty} = \sup_{x \neq \theta_{1\infty}} \frac{||B_{GS}x||_{\infty}}{||x||_{\infty}} = \sup_{x \neq \theta_{1\infty}} \frac{||y||_{\infty}}{||x||_{\infty}} \leq \lambda < 1.$$

Now we can apply the Banach fixed point theorem for the iterative function $\Phi: l^{\infty} \to l^{\infty}$, $\Phi(x) = B_{GS}x + c$. Indeed, Φ is a contraction, because

$$\|\Phi(x) - \Phi(y)\|_{\infty} = \|(B_{GS}x + c) - (B_{GS}y + c)\|_{\infty} = \|B_{GS}(x - y)\|_{\infty} \le \|B_{GS}\|_{\infty} \cdot \|x - y\|_{\infty}.$$

This means that the sequence $(x^k)_{k\in\mathbb{N}}$ is convergent in l^{∞} for every $x^0 \in l^{\infty}$ and its limit point $x^* \in l^{\infty}$ is the unique fixed point of Φ in l^{∞} , i.e. $\Phi(x^*) = x^*$. So $B_{GS}x^* + c = x^*$, which is equivalent with $Ax^* = b$.

Corollary 4. If for the matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ we have $a_{ij} = 0$ when i > n, j > n, and $b_i = 0$ for i > n, $n \in \mathbb{N}$, then we reobtain the linear system with finite number of equations and finite number of unknowns. In this way from theorem 5 we obtain the classical Gauss-Seidel's iterative numerical method to solve finite systems of linear equations [2].

In the next we consider the following definition:

Definition 4. The matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ is l^1 diagonal dominant if there exists $\lambda \in (0, \frac{1}{2})$ such that for every $j \in \mathbb{N}$ we have $\lambda \cdot |a_{jj}| > \sum_{\substack{i=0 \ i \neq j}}^{\infty} |a_{ij}|$.

It is immediately that A is l^1 diagonal dominant if and only if $\sup_{j \in \mathbb{N}} \sum_{\substack{i=0 \ i \neq j}}^{\infty} \left| \frac{a_{ij}}{a_{jj}} \right| < \frac{1}{2}$.

Theorem 6. If A is l^1 diagonal dominant then the iterative sequence $(x^k)_{k\in\mathbb{N}}$ is convergent in l^1 for every $x^0 \in l^1$. The limit point $x^* \in l^1$ is the unique solution of the linear system Ax = b.

Proof. We have:

$$||y||_{1} = \sum_{i=0}^{\infty} |y_{i}| = \sum_{i=0}^{\infty} \left| -\sum_{j=0}^{i-1} \frac{a_{ij}}{a_{ii}} \cdot y_{j} - \sum_{j=i+1}^{\infty} \frac{a_{ij}}{a_{ii}} \cdot x_{j} \right| \leq$$

$$\leq \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i-1} \left| \frac{a_{ij}}{a_{ii}} \right| \cdot |y_{j}| + \sum_{j=i+1}^{\infty} \left| \frac{a_{ij}}{a_{ii}} \right| \cdot |x_{j}| \right) \leq$$

$$\leq \sum_{j=0}^{\infty} \left(\sum_{i=0}^{j-1} \left| \frac{a_{ij}}{a_{jj}} \right| \cdot |x_{j}| + \sum_{i=j+1}^{\infty} \left| \frac{a_{ij}}{a_{jj}} \right| \cdot |y_{j}| \right) \leq$$

$$\leq \sum_{j=0}^{\infty} \left[\left(\sum_{i=0}^{j-1} \left| \frac{a_{ij}}{a_{jj}} \right| \right) \cdot |x_{j}| + \left(\sum_{i=j+1}^{\infty} \left| \frac{a_{ij}}{a_{jj}} \right| \right) \cdot |y_{j}| \right] \leq$$

$$\leq \sum_{j=0}^{\infty} (\lambda \cdot |x_{j}| + \lambda \cdot |y_{j}|) = \lambda \cdot ||x||_{1} + \lambda \cdot ||y||_{1}.$$

Consequently: $||y||_1 \le \lambda \cdot ||x||_1 + \lambda \cdot ||y||_1$, which is equivalent with: $\frac{||y||_1}{||x||_1} \le \frac{\lambda}{1-\lambda} < 1$. This means that:

$$||B_{GS}||_1 = \sup_{x \neq \theta_{i1}} \frac{||B_{GS}x||_1}{||x||_1} = \sup_{x \neq \theta_{i1}} \frac{||y||_1}{||x||_1} \le \frac{\lambda}{1 - \lambda} < 1.$$

Now we can apply the Banach fixed point theorem for the iterative function $\Phi: l^1 \to l^1$, $\Phi(x) = B_{GS}x + c$. Indeed, Φ is a contraction, because: $\|\Phi(x) - \Phi(y)\|_1 = \|(B_{GS}x + c) - (B_{GS}y + c)\|_1 = \|B_{GS}(x - y)\|_1 \le \|B_{GS}\|_1 \cdot \|x - y\|_1$. This means that the sequence $(x^k)_{k \in \mathbb{N}}$ is convergent in l^1 for every $x^0 \in l^1$ and its limit point $x^* \in l^1$ is the unique fixed point of Φ in l^1 , i.e. $\Phi(x^*) = x^*$. So $B_{GS}x^* + c = x^*$, which is equivalent with $Ax^* = b$.

Corollary 5. If for the matrix $A = (a_{ij})_{i,j \in \mathbb{N}}$ we have $a_{ij} = 0$ when i > n, j > n, and $b_i = 0$ for i > n, $n \in \mathbb{N}$, then we reobtain the linear system with finite number of

equations and finite number of unknowns. In this way from theorem 6 we obtain the classical Gauss-Seidel's iterative numerical method to solve finite systems of linear equations [2].

We mention that for the author is unknown if theorem 6 is true with definition 4 choosing $\lambda \in \left[\frac{1}{2}, 1\right)$.

Using the above presented theorems we can study the linear stationary processes with infinite but countable number of parameters.

References

- [1] L. Kantorovitch, G. Akilov, Analyse fonctionnelle, Éditions MIR, Moscou, 1981.
- [2] F. Szidarovszky, S. Yakowitz, Principles and Procedures of Numerical Analysis, Plenum Press, New York and London, 1978.
- [3] B. Finta, A Remark about Vector and Operator Norms, Mathematical Magazine Octogon, Vol. 6, No. 1, April, 1998, pag. 58-60, Braşov.
- [4] B. Finta, A Remark about Vector and Matrix Norms (II), Buletin Ştiinţific, vol. XV-XVI, Universitatea "Petru Maior", Tg. Mureş, 2002-2003, pag. 113-120.
- [5] B. Finta, Jacobi's Theorem for Infinite System of Linear Equations, Profesor Gheorghe Fărcaş la vârsta de 70 de ani, Volum omagial, Editura Universității "Petru Maior" Tg. Mureş, 2004, pag. 103-108.
- [6] B. Finta, Gauss-Seidel's Theorem for Infinite System of Linear Equations, Buletin Ştiinţific, vol. XVII, Universitatea "Petru Maior", Tg. Mureş, 2004, pag. 287-294.

Béla Finta

Department of Mathematics, "Petru Maior" University Tg.Mureş, str. Nicolae Iorga nr.1, 540088, Romania, e-mail: fintab@upm.ro