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Abstract 

Neural networks are appropriate mathematical tools for the prediction of the nonlinear components of 
time series. We presume that there are functional relations among past, present and future values of time series. 
We have analyzed the behavior of neural networks in the prediction of different economical time series, building 
a special architecture of neural networks.  
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1. INTRODUCTION 

 
The economical land financial processes have major importance in the life and in the 

evolution of the society. Their understanding is vital for the companies and other 
functional economic entities. 

In many cases, the classical stochastic modeling techniques do not produce satisfactory 
results (i.e., many important events are not predicted by these). In this respect, we have to 
find other methods that can deal with inherent nonlinearities in treating these nonlinear 
economic forecasting problems. 

The neural networks, known as tools for nonlinear approximation [4], regression and 
prediction are prime candidates to be used in the context of these new nonlinear 
approaches to economic and financial predictions.  

 
1.1. Objectives 
 

The main objective of the paper is to present some results about the artificial neural 
networks in the context of nonlinear economic and financial modeling and prediction. We 
aim to identify and present in a rigorous way the fundamental properties of the neural 
networks and to show the relevancy of these properties in the context of practical 
applications. 

  
1.2. Problem definition 
 

The paper is based on the assumption that the modeling and prediction of the 
economic and financial processes can be interpreted as the modeling and prediction of 
the time series that describe these processes. 

The main idea is that the modeling and prediction of time series can be conceived as 
approximation problems and specifically as minimal approximation problems [2], where 
the “minimal” term refers to the complexity of the models. Consequently, the theoretical 
part of the thesis deals with the analysis of the approximation properties of the artificial 
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neural networks and with the construction of neural network models with minimal 
complexity [3].  

                    
1.3. Approximation properties of artificial neural networks 
 

We have analyzed the learning capabilities of neural networks [6], arguing that the task 
of learning from examples can be considered in many cases to be equivalent to 
multivariate function approximation, that is, to the problem of approximating a smooth 
function from sparse data, the examples (training set).  

Our approach is based on the recognition that the ill-posed problem of function 
approximation from sparse data must be constrained by assuming an appropriate prior on 
the class of approximating functions.  

In this context, we have to be more precise in establishing the meaning of “ill-posed 
problem of function approximation from sparse data” [8].  

Definition 1: The problem of approximating a function f: X → Y is well-posed if the 
following conditions are satisfied: 

(C1) Existence: For any x ∈ X, there exists y ∈ Y with ( )xfy = ; 
(C2) Uniqueness: For any x, y ∈ X, ( ) ( )yfxf =  if and only if x = y; 
(C3) Continuity: function f is continuous. 
Definition 2: The problem of approximating a function f: X → Y is ill-posed if the one 

of the conditions (C1), (C2), (C3) is not satisfied. 
From this point of view, the learning process of a neural network, or the 

approximation of a smooth function using a set of examples, called training set, is ill-
posed. Usually the training set doesn’t contain enough information; therefore the 
condition of uniqueness (C2) is not satisfied. In many cases, the training set contains 
noisy data that implies that the condition of continuity (C3) set is not satisfied. 

Concluding, we can say that the learning process of a neural network is equivalent to 
the approximation of a smooth function from examples (the training set) [13]. 

 
1.4. Regularization neural networks 

 
Regularization techniques typically impose smoothness constraints on the 

approximating set of functions. It can be argued that some form of smoothness is 
necessary to allow meaningful generalization in approximation type problems. A similar 
argument can also be used in the case of classification where smoothness involves the 
classification boundaries rather than the input-output mapping itself.  

Our use of regularization, which follows the classical technique, introduced by 
Tikhonov [17], [18], identifies the approximating function as the minimizer of a cost 
functional that includes an error term ( 2

2
1∑ −

i
ii yz ) and a smoothness functional [ ]fΦ

2
1 , 

usually called a stabilizer.  
Suppose that the training set ( ){ }NizxT ii ,,2,1, K==  has been obtained by random 

sampling of a function f, belonging to some space of functions X defined on Rn, in the 
presence of noise, and suppose we are interested in recovering the function f, or an 
estimate of it, from the set of data T. This problem is clearly ill-posed, since it has an 
infinite number of solutions. In order to choose one particular solution we need to have 
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some a priori knowledge of the function that has to be reconstructed. The most common 
form of a priori knowledge consists in assuming that the function is smooth, in the sense 
that two similar inputs correspond to two similar outputs.  

The main idea underlying regularization theory is that the solution of an ill-posed 
problem can be obtained from a variational principle, which contains both the data and 
prior smoothness information. Smoothness is taken into account by defining smoothness 
in such a way that lower values of the functional correspond to smoother functions.  

Since we look for a function that is simultaneously close to the data and also smooth, it 
is natural to choose as a solution of the approximation problem the function that 
minimizes the following functional [7]:  

[ ] ( ) [ ]∑ Φ+−=
i

ii fzyfH λ
2
1

2
1 2                   (1) 

λ is a positive number that is usually called the regularization parameter. The first term is 
enforcing closeness to the data, and the second smoothness, while the regularization 
parameter controls the trade off between these two terms. It can be shown that, for a 
wide class of functional (1), the solutions of the minimization of the functional (1) all 
have the same form [5].  

The function that minimizes the functional (1) has the following form [15]:   
( ) ( ) ( )xx;xx pGwf

i
ii +=∑            (2) 

where p(x) is a term belonging to the null space of the regularization term [ ]fΦ
2
1 . 

In practical application we can consider classes of stabilizers with void null space. 
Therefore, without reducing the generality of the solution of the minimization of 
functional (1), we can consider the following practical solution: 

( ) ( )∑=
i

iiGwf x;xx           (3) 

The solution (3) of the variational problem (1) has a simple interpretation in terms of a 
neural network with one layer of hidden units, of Multy Layer Perceptron (MLP) type 
[10]. 

 

2. DATA SERIES PREDICTION WITH NEURAL NETWORKS 

 
2.1 General problems 

 
      Economic problems have an important role in the society life, activity of companies 
and people. To better understand these problems and to find the desired solutions, 
economists try to build models that describe the investigated problems. Using some 
developed models and predictions, studies are made to find the optimal solution. 
     Usually, data accessible to the economists are sets of numeric values that describe the 
situations about the investigated problem in a certain moment. Numeric data sets are 
called data series, and their analysis and values prediction is called the analysis respectively 
the prediction of data series. Examples of data series are: the value of monthly 
unemployment, the value of monthly / annual inflation, the value of different stocks and 
the value of daily exchange between different currencies. To develop those economic 
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models we have to study the analysis of economic time series, and for the decisions 
process we have to make the prediction for those series, using the developed models.  
      An important class of economic data series is represented by financial data series. 
These series contain data that represent monetary values of some economic objects or 
reports on some monetary values of economic objects. In this way, these series play an 
important role in monetary decisions of the central bank, in the investments made by 
companies and private people, in stock exchange transactions.   
 
   2.2 The analysis and prediction of data series 
 
 A simple model for data analysis is based on the auto-regressive model of order p, 
noted by AR(p) and the average sliding model of order q, denoted by MA(q). In the auto-
regressive case the model is written [1]:  

tptptt ZXaXaX +++= −− K11    (4) 
where ai are the coefficients of the model, and Zt are the probabilistic variables that 
follow the same normal probabilistic distribution with 0 average  and 2σ variation.  

The probabilistic average models have the following formula [1]:  
qtqtt ZbZbX −++= K0    (5) 

where bi are the parameters of the model, and Zt is following the same normal probability 
rule ),( σmN .  
 The combined model of AR(p) and MA(q) is the model ARMA(p,q) that contains 
both components, having the following formula:  

qtqttptptt ZbZbZXaXaX −−− ++++++= KK 011   (6) 
The prediction of data series is based on the supposition that there exist a 

functional relations between past, present and future data series values. Usually the 
supposition is that the functional relation is not completely deterministic, but also 
contains a stochastic component. In several cases, especially in the case of financial time 
series, it is assumed that the deterministic component is not dominant, the stochastic 
component being of great importance.  

The idea of applying neural networks has its origins in the observation that 
functional relations between time series values are in most cases non-linear. Thus, for the 
approximation of these non-linear functional relations neural networks are very efficient 
[2], [20].        

 
2.3 Predictions at microeconomic level 

 
 A large usage of predictions using financial data series is at microeconomic level. 
In this category we can consider predictions regarding exchange rates, predictions 
regarding different financial products, predictions regarding the value of products and 
commercial products (gold, aluminum, etc.). The usual users of these predictions are 
investors and brokers. 
 The problem of prediction at microeconomic level is the presence of the 
stochastic components. In this case one can observe relatively frequent shocks produced 
by more or less independent events, independent from the data series object (quick 
changes of values caused by wars and in general by political events). Another special 
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phenomenon of these series is the presence of short or medium time trends that can 
disappear in short time.  

 
2.4. Data processing 

 
Data processing represents the process of data transformation before building the 

models. These transformations are conversions, classifications, filtrations or other similar 
processing. 

Many times data are not properly structured to build predictive models. In these cases 
it is important to remove components that represent redundant or irrelevant information 
[16]. 

Another important aspect is the necessity to validate the proposed models. For this 
reason we need to have data to build the model and data to validate the model. Thus, it is 
necessary to divide data for training data and data for validation. 

  
2.4.1. Processing methods 
 

 The general purpose of preprocessing is to remove the observable deterministic 
relations. Theoretically, the purpose is to obtain some data series with mean 0 and a small 
variation. 
 The first step in data preprocessing is to make comparable the components of the 
data series. For this purpose it is necessary to rescale the data so that the values of the 
data series components to have values in the interval [0,1] or [-1,1].  
 The second step is to remove the primary deterministic components that are easy 
to be observed. Examples of these types of components are trend and seasonality [12].  
 In the next step we can perform a data filtering. The purpose of the filtering 
process is to remove non-trivial periodical components that have dominant effects in data 
series. To determine those periodical components we can apply a Fourier transformation 
of the data series. To filter these components we can build linear filters. The most 
common filters are the low-pass filters, high-pass filters and band-pass filters. By 
combining those filters can be filtered outside non-trivial periodical components existing 
in data series [19]. These filters usually have the following form:  

After removing the deterministic observable components we have the input data 
vectors that contain relevant information. On one side this is done by removing the 
components of data vectors that are not meaningful according to the known knowledge, 
on the other side data vectors are combined to obtain new vectors with more complete 
informational content. The question is, which are the previous data that influences the 
values of the data series in a future moment. This doesn’t mean to search for functional 
relations but also to the search for relevant information. This problem is also called the 
problem of determination of data dimension.  

Finally, input data vectors are analyzed to determine possible clustering [7]. This is 
done through simple classification of data. If we can group the data in precise distinct 
classes, separate models are built for those classes. It is possible, that after clustering the 
models to be equivalent. We must verify model equivalence, and in case of equivalent 
relations, we must build simplified data general models [12]. 
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2.4.2. Data for training and validation 
 

 Analyzing the data corresponding to a problem it is possible to build predictive 
models. It is very important to test the accuracy of the generated model. Through 
validation we understand the testing of the model and the measurement of its 
performance using a measure of performance [14].  

A method for splitting data in training data and in validation data is the simple 
division based on data feature. We can consider the data xt with t <= T0 as training data 
and data xt with t > T0 as validation data.  

A practical observation is that the selection of the model depends on the 
validation set. A way to select the best model is to use more than one set of validation, for 
example the validation data are grouped in many validation sets. After that, the generated 
models are verified with every validation test and a balanced validation is generated. 
Theoretically, it is desired that the validity of the models to be tested for every possible 
validation set. But this is not possible practically, because of the necessity of excessive 
calculation.  

 
2.5. Performance measurement 

 
 The performance measurement of predictive models is crucial for their practical 
application. A common measure regarding predictive models, including neural networks, 
is the use of square average error. Many times prediction errors are too large in the 
context of real applications because of the stochastic components present in the financial 
series. For this reason it is necessary to use additional performance measures to test the 
validity of the predictive models. Examples of additional performance measures are: the 
measure of generated profit, the measure of correct prediction of different value, the 
measure of correlation between the real values and the predicted values, the measure of 
error towards the real value of predicted value and other similar measures [20]. 
 In conclusion, we can say that neural networks are efficient tools to detect 
nonlinear relations that rule, at least partially, the behavior of time series. As the majority 
of financial data series contain nonlinear components, neural networks are good 
candidates to predict this type of series. Because financial data series have important 
stochastic components, is very important to build minimal models, that estimate 
sufficiently well nonlinear relation, and in the same time, it doesn’t incorporate the 
stochastic noise.  
 
 

3. PRACTICAL IMPLEMENTATION OF THE NEURAL NETWORK 

 
 The practical part of this paper is related to the implementation of a neural 

network that offers the possibility to analyze and predict data series. In this simulation we 
have tried to approximate and to predict some financial data series.  

The parameters that are influences the learning process are: the training data set, 
the number of epochs (number of the presentation of the training data set), learning rate, 
the activation functions for the neurons contained in the hidden layer, the number of 
neurons in the hidden layer. 
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 We have built a practical application, based on a MLP neural network, in order to 
test the prediction capabilities of neural networks [4].    

The architecture of the neural network used in our simulation is corresponding to a 
MLP neural network with one hidden layer [11]: 

• The input layer contains n input neurons, n representing the dimensionality of the 
input space ( ) ( ) ( )( )n

iiii xxxx ,,, 21 K=  ∈ Rn. The bias can be considered explicitly or 
implicitly.  

• The hidden layer having a number of hidden neurons equal to the dimension of 
the training set ( )( ){ }NifT ii ,,2,1, K== xx . The activation functions of the 
hidden neurons are Green functions ( )kG xx −  [11]. The dimension of the 
hidden layer can be reduced using an unsupervised clustering algorithm; 

• The output layer contains one single output layer having as activation function a 
linear function or a special weighted functions of the output values generated by 
the neurons in the hidden layer [6]; 

Synaptic weights: 
• The weights between the input layer and the hidden layer are included in the form 

of the activation functions of the hidden neurons. The vector 
)Nw,K  represents the weights between the hidden layer and the 

output layer. 
( ww ,, 21=w

 
 
 
 
  
 
 
 
 
 
 

 
 
 

 
Fig. 1: Architecture of the neural network used for simulations. 

 
The neural network was trained using an original learning algorithm, based on the 

back-propagation learning strategy. For learning we have used a training set containing 
financial data series, like the exchange rate between RON and EUR or RON and USD. 
The learning set, corresponds to the time frame January 2004- June 2005, and was 
obtained from the official Web-site of the National Bank of Romania http://www.bnr.ro 
(Banca Nationala a Romaniei). After learning we have performed a testing phase, in order to 
measure the accuracy of the trained neural network.  
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Number of epochs Learning error 
10 0.0289682211941586 
50 0.0135544478100808 
100 0.00669238729756063 
500 0.00268232311020435 
1000 0.00192883390014049 
5000 0.00163946058914474 
10000 0.00157560371972362 

 
Table 1.: Results of the learning phase: the learning error obtained for different number 

of epochs. 

4. CONCLUSIONS 

 
The paper presents a general model of the application of neural networks in the 

domain of modeling and prediction of economic and financial time series. The synthesis 
is based on two theoretical blocks, namely, the approximation properties of the neural 
networks and the regularization theory. The results presented in the paper confirm the 
fundamental role of the theoretical models for the application of neural networks for 
prediction time series. 
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