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Abstract

In this paper, using the polynomial extrapolation, we solve an initial value

problem in ordinary differential equations. The aim of this paper is to compare

with the fourth-order Runge-Kutta method on the basis of accuracy for a given

number of function evaluations.
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1 Polynomial extrapolation

In many situations in numerical analysis we wish to evaluate a number A0, but we

are able to compute only an approximation A(h), where h is a positive parameter

and where A(h) → A0 as h → 0. Let us suppose that, for every fixed N, A(h)

possesses an asymptotic expansion of the form:

A(h) = A0 + A1h + A2h
2 + . . . + ANhN + RN(h),

RN(h) = O(hN+1), as h → 0,

where the coefficients A0, A1, . . . , AN are independent of h. We shall summarize this

statement by writing:

A(h) ≈ A0 + A1h + A2h
2 + . . . (1)
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Suppose that we have calculated A(h0) and A(1
2
· h0), so: A(h0) = A0 + O(h0) and

A(1
2
h0) = A0 + O(h0) as h → 0. There exists a linear combination of A(h0) and

A(1
2
h0) which differs from A0 by an O(h2

0) term:

2A

(
1

2
h0

)
− A(h0) = A0 − 1

2
A2h

2
0 − . . . = A0 + O(h2

0) (2)

This is the basic idea of Richardson extrapolation. It can be extended in several

ways: in addition to A(h0) and A(1
2
h0), we compute A(1

4
h0) and then we can find

a linear combination of these three values which differs from A0 by an O(h3
0) term.

Moreover, we don’t need to consider only the sequence: h0,
1
2
h0,

1
4
h0, . . . , but a

general sequence h0, h1, h2, . . . of values of h, where:

h0 > h1 > h2 > . . . hs > 0 (3)

In general, we can find a linear combination with the property:

S∑
s=0

cs,sA(hs) = A0 + O(hs+1
0 ), h → 0 (4)

The forming of such linear combinations is essentially equivalent to polynomial in-

terpolation at h = 0 of the data (hs, A(hs)), s = 0, 1, 2, . . . , S. If the extrapolation is

performed in an iterative manner (due originally to Aitken and Neville), it is avoid

computing the coefficients cs,S in (4). For each value of hs compute A(hs) and de-

note the results by a
(0)
s . Let I01(h) be the unique polynomial of degree 1 in h which

interpolates the points (h0, a
(0)
0 ) and (h1, a

(0)
1 ) in the h−A(h) plane. This polynom

may be represented in terms of a 2× 2 determinant as follows:

I01(h) =
1

h1 − h0

∣∣∣∣∣
a

(0)
0 h0 − h

a
(0)
1 h1 − h

∣∣∣∣∣ (5)

So defined I01(h) is indeed a polynomial of degree 1 in h and: I01(h0) = a
(0)
0 ,

I01(h1) = a
(0)
1 .

Let us denote by a
(1)
0 the result of extrapolating to h = 0 using this polynom; so

I01(0) = a
(1)
0 . From (1) it follows that a

(1)
0 = A0 +O(h2

0), in the case when h1 = 1
2
h0;

a
(1)
0 coincides with the left side of (2). We obtain a value a

(1)
1 = A0 + O(h2

1) by a

similarly extrapolating to zero using the linear interpolant of the data (h1, a
(0)
1 ) and

(h2, a2(0)), where

a
(1)
1 = I12(0),

I12(h) =
1

h2 − h1

∣∣∣∣∣
a

(0)
1 h1 − h

a
(0)
2 h2 − h

∣∣∣∣∣ .
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Now we note by I012(h) the unique polynomial of degree 2 which interpolates the

points: (h0, a
(0)
0 ), (h1, a

(0)
1 ), (h2, a

(0)
2 ) in the h− A(h) plane. Then we may write:

I012(h) =
1

h2 − h0

∣∣∣∣∣
I01(h) h0 − h

I12(h) h2 − h

∣∣∣∣∣

since:

(i) I012(h) is a polynomial of degree 2 in h;

(ii) I012(h0) = I01(h0) = a
(0)
0 ; I012(h2) = I12(h2) = a

(0)
2 ;

(iii) I012(h1) = [(h2 − h1) · a(0)
1 − (h0 − h1)a

(0)
1 ]/(h2 − h0) = a

(0)
1 .

Extrapolating to zero by this polynomial define us: a
(2)
0 = I012(0) and we find

that a
(2)
0 = A0 + O(h3

0). Note that a
(2)
0 is a linear combination of a

(0)
0 , a

(0)
1 and a

(0)
2 ,

so that we have found the required linear combination (4) in the case S = 2. This

process can be continued to give higher-order approximations to A0 and we may be

summarized by the following table:

h0 a
(0)
0

h1 a
(0)
1 a

(1)
0

h2 a
(0)
2 a

(1)
1 a

(2)
0

h3 a
(0)
3 a

(1)
2 a

(2)
1 a

(3)
0

...
...

...
...

...

(6)

where
a

(0)
s = A(hs), s = 0, 1, 2, . . .

a
(m)
s = 1

hm+s−hs

∣∣∣∣∣
a

(m−1)
s hs

a
(m−1)
s+1 hm+s

∣∣∣∣∣ , m = 1, 2, . . .
(7)

For computation is more suitable an equivalent form of (7):

a(0)
s = A(hs); a(m)

s = a
(m−1)
s+1 +

a
(m−1)
s+1 − a

(m−1)
s

hs/hm+s − 1
,m = 1, 2, . . . ; s = 0, 1, 2, . . . (8)

We show that: a
(m)
s = A0 + O(hm+1

s ).

The benefits of repeated extrapolation are greatly enhanced if it happens that

the asymptotic expansion for A(h) contains only even powers of h - this will be the

case for some important applications to ordinary differential equations.

For example, corresponding to (2), we have:

4

3
A

(
1

2
h0

)
− 1

3
A(h0) = A0 + O(h4

0).
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If the asymptotic expansion for A(h) has the form:

A(h) ≈ A0 + A2h
2 + A4h

4 + . . . (9)

then the process of repeated polynomial extrapolation is described by (6), where

now in place of (8):

a(0)
s = A(hs); a(m)

s = a
(m−1)
s+1 +

a
(m−1)
s+1 − a

(m−1)
s

(hs/hm+s)2 − 1
,m = 1, 2, . . . ; s = 0, 1, 2, . . . (10)

We then have a
(m)
s = A0 + O(h2m+2

s ).

The algorithm defined by (6) and (10), where (9) is assumed, is analysed by

Gragg who shows that if A(h) is continuous from the right at h = 0, then a necessary

and sufficient condition for the convergence of {a(n)
0 } to A0 as n → ∞ is that

sup
n≥0

(hn+1/hn) < 1. Gragg show that each column of (6) then converges to A0 faster

than the one to its left, and that if: inf
n≥0

(hn+1/hn) > 0. The principal diagonal

a
(0)
0 , a

(1)
0 , a

(2)
0 , . . . converges to A0 faster than any column. Under mild conditions

on A(h), {a(n)
0 } converges to A0 superlinearly, in sens that: |a(n)

0 − A0| ≤ Kn and

lim
n→∞

(Kn+1/Kn) = 0.

2 Application to initial value problems in

ordinary differential equations

For a given discrete numerical method (linear multistep, Runge-Kutta) let denote

y(x; h) the approximation at x, given by the numerical method with steplength h,

to the theoretical solution y(x) of the initial value problem: y′ = f(x, y), y(x0) = y0.

We intend to use polynomial extrapolation to furnish approximations to y(x) at

the basic points x0 + jH, j = 0, 1, . . . , where H is the basic steplength.

First we choose a steplength h0 = H/N0, where N0 is a positive integer and apply

the numerical method N0 times starting from x = x0 to obtain an approximation

y(x0 +H; h0) to the theoretical solution y(x0 +H). A second steplength h1 = H/N1,

where N1 is a positive integer greater than N0 and the method applied N1 times,

again starting from x = x0, to yield the approximation y(x0 + H; h1).

Proceeding in this fashion for the sequence of steplengths {hs}, where hs = H/Ns,

{Ns | s = 0, 1, . . . , S} being an increasing sequence of positive integers, we obtain

the sequence of approximations {y(x0 + H; hs) | s = 0, 1, . . . , S} to y(x0 + H). In

practice S is in the rand 4 to 7.
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If, for the given numerical method, exists an asymptotic expansion of the form:

y(x; h) ∼ y(x) + A1h + A2h
2 + A3h

3 + . . . (11)

then we can set a
(0)
s = y(x0 + H; hs) in (6) and apply the process of repeated

polynomial extrapolation using (8). Equation (10) replaces (8) in the case when the

numerical method possesses an asymptotic expansion of the form:

y(x; h) ∼ y(x) + A2h
2 + A4h

4 + A6h
6 + . . . (12)

Then we take the last entry in the main diagonal of the table (6) as our final

approximation to y(x0 + H) and denote it by y∗(x0 + H; H).

To obtain a numerical solution at the next basic point x0+2H, we apply the whole

of the above procedure to the new initial value problem: y′ = f(x, y), y(x0 + H) =

y∗(x0 + H; H).

The motivation for extrapolation methods depends heavily on the possibility of

choosing H to be large. Nevertheless, these results can be fairly described as gen-

erally encouraging, particularly since the numerical methods behind the algorithm,

the mid-point rule, has no interval of absolute stability.

3 Weak stability

The success of extrapolation methods thus hinges on the existence of numerical

methods which asymptotic expansions of the form (11) or, preferably (12). The

existence of such expansions had frequently and rigorously investigated by Gragg.

Gragg’s method (the modified mid-point method) is thus defined as follows:

hs = H/Ns, Ns-even,

y0 = y(x0),

y1 = y0 + hsf(x0, y0)

(13)

ym+2 − ym = 2hs · f(xm+1, ym+1), m = 0, 1, 2, . . . , Ns − 1,

y(x0 + H; hs) =
1

4
yNs+1 +

1

2
yNs +

1

4
yNs−1.

If (13) is repeated for an increasing sequence Ns, s = 0, 1, . . . , S, of even integers,

polynomial extrapolation using (6) and (10) can be applied. Two popular choices

for the sequence {Ns} are {2, 4, 6, 8, 12, 16, 24, . . . } and {2, 4, 8, 16, 32, 64, . . . }.
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We investigate the existence of asymptotic expansions of the form (12) for general

implicit one-step methods of the form:

yn+1 − yn = h · φ(xn, xn+1, yn, yn+1, h) (14)

and we show that if the function φ satisfies the symmetry requirement:

φ(s, t, η, ξ, h) = φ(t, s, ξ, η,−h) (15)

the (14) possesses an asymptotic expansion of the form (12). The trapezoidal rule

satisfies this requirement, as does the implicit mid-point method,

yn+1 − yn = h · f
(

xn + xn+1

2
,
yn + yn+1

2

)
.

This method suffers the disadvantage that it must be solved exactly for yn+1 at

each step, if the asymptotic expansion is to remain valid. For practical purposes

(13) still remains easily the most appropriate numerical method on which to base

an extrapolation algorithm.

The mid-point method has no interval of absolute stability, but the algorithm

has a non-vanishing interval of absolute stability. We cannot deduce from these in-

tervals any useful information on the weak stability properties of the overall method

consisting of (13), followed by polynomial extrapolation, since the latter forms linear

combinations of the y(x0 + H; hs) s = 0, 1, 2, . . . , S the coefficients in the combina-

tions sometimes being negative.

Stetter adopts a new approach by computing the perturbation at x0 + H which

results on introducing unit perturbations in each step of (13) applied to the lin-

ear differential equation y′ = λy, and then forming the linear combinations which

correspond to the extrapolation process.

Now, with polynomial extrapolation for the sequence Ns = 2, 4, 6, 8, 12 (applying

method (13)) we solve the initial value problem: y′ = −y, y(0) = 1, for one basic

step of length H = 1, 0.

The table (6) can be constructed using (10). Each of the entries a
(m)
s is an

approximation to the theoretical solution y(1) = e−1; the entries in brackets denote

the global error: y(1)− a
(m)
s , multiplied by 105.

The results are clearly consistent on the rates of convergence of the columns and

the principal diagonal. Note that the error in the final extrapolated value is roughly

40.000 times smaller than the error in the most accurate of the original computed

solutions y(1; hs).
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ss NHh / )(m

sa

2

1
0h

0,375000

(-712,056)

4

1
1h

0,371093

(-321,431)

0,369791

(-191,223)

6

1
2h

0,369455

(-157,644)

0,368145

(-26,614)

0,367939

(-6,038)

8

1
3h

0,368796

(-91,739)

0,367949

(-7,004)

0,367884

(-0,467)

0,367880

(-0,096)

12

1
4h

0,368297

(-41,768)

0,367897

(-1,791)

0,36787998

(-0,054)

0,36787946

(-0,002)

0,36787943

(0,001)

The first application of (13) clearly costs N0 + 1 evaluations of the function

f(x, y). Each application of (13) for given Ns will cost Ns evaluations (since the

evaluation of f(x0, y0) need not be repeated). Thus, to compute y(1; hs) for the

first 3, 4 and 5 members of sequence {1
2
, 1

4
, 1

6
, 1

8
, 1

12
} of steplength, costs respectively

13, 21 and 33 evaluations of f. Since the fourth-order Runge-Kutta method costs 4

evaluations per step, we shall compute solutions by it, using steplengths 1
3
, 1

5
and 1

8
,

which will costs 12, 20 and 32 evaluations respectivelly. We compared the errors in

the two processes:

Polynomial extrapolation Runge-Kutta

Evaluations Error Evaluations Error

13 - 6,038 10
-5 12 - 5,002 10

-5

21 - 0,096 10
-5 20 - 0,580 10

-5

33 0,001 10
-5 32 - 0,083 10

-5

The superiority of the extrapolation method asserts itself only when S ≥ 2. In

practice S is typically in the rang 4 to 7.
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