A COMPARATIVE STUDY OF CYBER-PHYSICAL CLOUD

SYSTEMS
Gheorghe SEBESTYEN, Professor PhD,
Adela Beres, PhD Candidate,
Technical University of Cluj-Napoca,
Béla GENGE, Associate Professor PhD,
“Petru Maior” University of Tirgu Mures

Abstract: Cyber-physical systems are more and more integrated into Internet of
Things (IoT) making it vulnerable to malicious attacks. These systems generate
huge amount of information, making Cloud Computing a natural choice to store
and process this data. Nevertheless, as shown in this paper, their integration
raises security issues that need to be addressed. We present platforms for cyber-
physical Cloud systems, as well as a set of security test scenarios we performed
in order to discover their vulnerabilities.

Index Terms: Cloud computing, Security, Cyber-physical Systems

1. Introduction

Nowadays there are huge volumes of digital information being
generated, transmitted, processed or stored around the world. The
amount of space and processing power of private companies and tenants
is limited and usually not enough to handle all their data. More and
more of these companies move their data to the Cloud. Cloud
Computing provides the infrastructure and space to store large amounts
of data and also process it in a timely manner, while providing
availability and resilience.

Cyber-physical systems are becoming part of our daily life, being Smart
Grids, sensors for humidity, air, pollution, wind or even body sensors to
monitor our health. Smart cities are the next generation of cities in which
we are going to live. Even today, cities like Barcelona have an
infrastructure of sensors which are monitoring weather conditions or
transportation in order to make the town smart, signaling alerts or
helping to organize the municipality activities better. Cloud Computing
comes as a natural choice to implement smart cyber-physical platforms
due to its storage and computational capacity.

775

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Security is an important aspect in Cloud integrated cyber-physical
systems. Data needs to be safe throughout the whole communication
chain, from the moment it is generated to the moment it is stored. Only
authorized users are allowed to access the information stored in Cloud.
Integrity of the data should also be guarded. Tampering with the data,
bad data injection can cause false alarms or malfunctioning of the cyber-
physical systems.

Briefly, in this paper we present the existing solutions and platforms
which integrate Cloud Computing with cyber-physical systems focusing
on the security aspects that they implement.

The paper is organized as follows. Chapter 2 depicts the existing
researches and platforms which integrate Cloud Computing with cyber-
physical systems. Chapter 3 is dedicated to the study and testing of two
open source platforms: Sentilo for Smart Cities and Mirantis OpenStack.
Chapter 4 discusses the findings of the studied literature and platforms.
The paper concludes in Chapter 5.

2. Cyber-physical Cloud Systems

2.1 S. H. Shah et al. WSN integrated Cloud framework

The authors propose a framework to integrate wireless sensor networks
with Cloud. The main modules of the architecture are:

o User Identity & Access Management Unit
o Monitoring & Metering

. Request Subscriber

o Data Processing Unit

. Pub/Sub Broker

. Data Repository

The framework is depicted in the following figure:

776

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Research institute Individual Administrator

Identity & P .
-<—> AccessManagement Unit Monitoring & Metering

/—\/\/\/\ Access Policy 1
|
~ Clouds)
/_/L SaaS PaaS laaS

va Request Subscriber
|
_ Clouds \) Gateway l

RN

Pub/Sub Broker Registry
Data Processing Unit
Event Matcher Analyzer

*

|

z
8 E

Data Repository

Figure 1 General overview of proposed architecture [1]

The users of the framework are not allowed to see or act on the data if
they are not registered through the User Identity & Access Management
Unit. Data coming from the WSN is passed through a gateway and sent
to the Data Processing Unit which stores it in the Data Repository. Also it
alerts the Pub/Sub Broker that new data was received. The Broker checks
the subscriptions with the help of the Request Subscriber module and
forwards the data to the respective users. Role-based Access Policy
(RBAC) is used to authenticate and authorize users in the system. Also,
in order to protect the data, the User Identity & Access Management Unit
implements Diffie-Hellman keys and Kerberos.

2.2 Wen-Yaw Chung et al. Cloud Computing system for agricultural
WSN

Wen-Yaw Chung et al. present an integrated framework for agriculture
monitoring systems composed of a WSN which collects data from
temperature, humidity etc. sensors and a Cloud platform which stores
and presents the data and useful graphs to the users [2].

777

BDD-A23338 © 2015 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

The proposed Cloud system has 1 master server and 4 slave computers
which are doing the work of collecting, sampling and analyzing sensors
data. Also the client communicates with the system through a web
service. The data is stored in relational databases. The system was
implemented using SQL database, stored procedures, Ling-to-Sql to
query the data, web service which uses XML to send/receive the
messages and the user interface was written in C#.

The data can be visualized in two ways: either a data curve or a
panorama map. On the panorama map the user can click on the specific
sensor to see its information and data that it generated.

2.3 Multi-Level Authentication for Sensor-Cloud Integration Systems
In this paper, the authors describe an authentication system based on
multi-level authentication technique which they modeled using Petri
nets. This system is used to secure the data generated by the sensors and
stored in the Cloud [3].

The levels on which the password gets generated then concatenated and
checked are:

o Organization level
. Team level
. User level

The architecture of the system consists of multiple sensor networks
which are connected to the Cloud platform. Data is being routed from
the nodes to the base stations and then to the Cloud using the ant colony
optimization technique. Afterwards it is stored in the Cloud. To gain
access to the data a user must pass all levels of authentication.

778

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Wireless Sensor Network

Authenticated organization in using cloud services

SA = Generate Multidi ional Service Authentication Password

Within Organization

TA = Generate Multi 1al Team Al i Password
J Within Team
PA = Generate idi ional User ication Password
Particular User
Wireless Sensor Network
Password = Concatenating(SA, TA, PA)
Super Special
Privileged Privileged NS’;‘?'
User User

Figure 2 System Architecture of the Proposed Cloud computing based sensor
data analysis environment [3]

2.4 Open.Sen.se architecture for integrating WSN with Cloud
The authors present a flexible and extensible architecture for a WSN
Cloud integrated system. It has 3 layers:

J Sensor layer
o Coordinator layer
. Supervision layer [4]

The sensors are organized in the Sensor Layer. They are called End
Devices and form a Mesh network which sends data through the base
station to the Coordinator Layer. All sensor nodes use XBee ZB platform.
The Coordinator Layer acts like a buffer, storing the data and sending it
to the Supervision Layer at predefined intervals. The Supervision Layer
upon receiving data connects to a web service to publish the data in the
Cloud. An Open.Sen.se server is used to store and retrieve the data
generated by the sensors. From a security point of view, a Sen.se key is
generated for each user of the API which is supposed to be unique. The
Open.Sen.se server provides a graphical display of the data through a
Senseboard and also sends event notifications using predefined If-

779

BDD-A23338 © 2015 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

conditions in the form of text messages or tweets if the value measured
for a sensor is pass the limit set by the user.

2.5 Secure Cloud-based Architecture for e-Health WSN5s

The architecture proposed in this paper has the following main

components:

. WSN which collects the data

. User applications to access the stored data

. HealthCare Authority (HA) which control the security protocols
. The cloud servers where the data is stored

Security-wise the authors propose to use ABE (Attribute Based
Encryption) and symmetric cryptography to encrypt the data. More
specifically, they propose to encrypt each file with a randomly generated
symmetric key (RSK) and encrypt the RSK with ABE. Both the encrypted
file and the encrypted RSK are sent to the cloud for storage to allow fine
grained data sharing with authorized users. HA generates and sends to
each user his ABE security parameters which are a pair of access
structure and secret key. The secret key is tagged with the user attributes
set which represent the user privileges. This information is required to
decrypt data that the user is allowed to access. The access structure
represents the access policy that protects the user data. When a user
encrypts the random symmetric key (RSK) that protects his data using
this structure, he can be sure that only authorized users (who have the
correct attributes) can decrypt and access his data [5].

Furthermore the communication between entities is performed via SSL
and data is encrypted before being sent to the cloud server. This
architecture guaranties the following security services:

. Fine-grained access control
. Integrity and authenticity
. Availability

J Collusion resistance

Using AES to encrypt the data and CP-ABE (Ciphertext-Policy ABE) to
only encrypt the AES key, this system proved to be 27-47% faster than
plain ABE encryption/decryption of the data.

2.6 Multi-agent system based architecture for secure Cloud

The authors propose an architecture which enforces the integrity of the
data in Cloud. The architecture is based on Multi Agent Systems, a term
used in artificial intelligence. The architecture has two layers and five

780

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

agents from which two are mainly used, Cloud Service Provider Agent
(CSPA) and Cloud Data Integrity Backup Agent (CDIBA):

= Mas Architecture Layer
".’
€
@
(@]
Ee)
=
o
(W]
U Cloud Resource Layer U

v (.-M il L“l
© b
b

@

>

L)

w

e

=3

i

) & §

o 4

Figure 3 Multi-agent architecture for Cloud [6]

The main responsibility of CSPA is to back up the data in Cloud and to
send alerts in case the data is altered or any kind of error happened, be it
human, software or hardware. CDIBA is responsible with the encoding
of data by using hash functions.

3. Security tests on open source platforms

3.1 Sentilo

Sentilo is an open source sensor and actuator platform designed to fit in
the Smart City architecture of any city that looks for openness and easy
interoperability. It has been sponsored by the Barcelona City Council,
through the Municipal Institute of Informatics (IMI), as part of a project
started in November 2011 conceived for defining the strategy and the
necessary actions in order to achieve global positioning Barcelona as a
reference in the field of Smart Cities [7].

781

BDD-A23338 © 2015 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

It is developed using open standards and free software so everybody can
benefit from it, experiment and use it in their own community and it’s
also supported by a variety of companies and cities. The main reason for
using open source software was to come in the aid of public
administration and private providers of sensors to make their interaction
and implementation of smart cities transparent and homogenous.

Until now, the sensors networks implemented in cities or other
environments are mainly proprietary solutions. This makes them
dependent of a specific technology and also usually impossible to share
data easily and without conversion between these networks and
environments. The incompatibility also increases the amount of data that
is duplicated in different systems and the costs of implementation and
maintenance of such interconnected structures.

So the main idea that inspired the design of Sentilo is first and foremost
the desire to create a cross-platform oriented infrastructure and data
management service, escaping from vertical ITC “silo” solutions, for
sharing information between heterogeneous systems and to easily
integrate legacy applications [7].

The regular users of Sentilo are:

o municipalities or organizations who need to process lots of
information received from the terrain generated by heterogeneous
hardware and software devices (sensors, etc.), and who want a
centralized and homogeneous way of managing and distributing these
data across their information systems

J anyone from the IT world interested in contributing to the
expansion of the "Internet of Things" and smart cities with the goal of
improving citizens' quality of life [7]

Sentilo is already implemented in Barcelona from the beginning of 2013.
The platform collects data from smart sensors all over the city including
water, lightning and energy sensors and plans to expand its networks in
the future years. Sentilo is also in testing phase in other Catalonian
regions and cities.

Sentilo makes it easy to integrate sensors and actuators from different
manufactures with applications to analyze and visualize the data. It acts
like a middle layer between the sensor networks layer and the
applications layer:

782

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

APPS

Direct

*BCN Apps

* 3 party apps / systems
W/Protocol adapter:
+0GC Compliant

* City SOK

~icity x

W/Modules & Agents:

*Alerts * Events

“Storage *Historian
Apps *Connectors ...

*Monitoring

« Audit

Other: Publish: Subscribed to:
+Catalog Mgmt *Data +Data changes 00 anwmrermest

+Data querys {virtu s) * Alerts

DATA PROCESSING AGENTS

Alerts
Catalog fea e [€— Pub/Sub é Ext. Storage

Storage

‘ N Connector

Monitoring / Audit

@
g
&
a
B
£
$
3
9
~
Z
T
5
3

other Publish.
*Autoregistry \ «Data
pullorders \ cAlens

SN ¢ owan) C N
PROVIDERS K?./-/ =
Direct - — I Provider
* Devices (direct) — = S
« Hubs Provider =N
*3"party apps \‘ 000
W/Protocol adapter: s) \

/

Subscribed to:

*Orders
ﬁ{} API HTTP/Rest

7 S | y
«Scada (ModBus/RTU/MTU/OPC) [D Q wo AN
+ Smart Metering (DLMS [EC62056) b 00 0 000 LJ
+3% party systems eoo 900 Qo0 = Q00 ‘e

Figure 4 Sentilo platform architecture [7]

Sentilo includes:

o A front-end for message processing, with a simple REST API

J An administration console for configuring the system and
managing the catalog

J A memory database, aimed to accomplish high performance rates
° A non-SQL database, in order to get a more flexible and scalable
system

o A universal viewer provided as a public demo what can be used
as a start point for specific business visualizers

J A basic statistics module that records and display basic platform
performance indicators

o An extensible component architecture, to enlarge the platform

functionality without modifying the core system. Sentilo starts with an
initial set of agents: one for exporting data to relational databases and
another to process internal alarms based on basic rules [7]

The open source technologies used to develop the platform are: Java,
Redis, Mongo DB, JQuery, JSON.

783

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

The Catalog component is used by the web application. As stated before,
Sentilo offers an administration console from where the users,
applications, providers, sensors, sensors types, components etc. can be
managed. Also it provides a graphical way to see the sensors, sensors
locations and their data through maps and charts. Alerts and alarms can
also be viewed from the web application.

Data received by the sensors is stored using the Real Time Storage
component. Besides this task, it also has the role of making periodical
backups of the data in the system.

The Pub/Sub component is written in Java and has two layers:

. Transport layer

J Service layer

In order to respond to client’s requests the transport layer uses workers
on separate threads. The requests are added to a queue and the workers
pick them as soon as they are available. After a task is assigned, the
worker sends it for processing to the Service layer. When it receives an
answer it will forward the message back to the client:

Transport Layer

1 Thread

Client 7 Listener
<8081> 3

—

Figure 5 Transport layer request flow [8]

The Service layer is in charge of processing, validating and authorizing
the requests. All tasks are done in memory using Redis, so the client
doesn’t have to wait long for the response.

784

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Service Layer

a CatalogSyncTask

Credentials &
permissions

ListenerMessageContainer

__I_I

SentiloRequestHandler 5
3b

Worker 7

2a 2b

3a 3b

REDIS
Figure 6 Service layer processing flow [8]

The processing flow of the Service layer is described below:

o The Worker delegates the request to the associated handler
depending on the type of request (data, order, alarm etc.)

o The following validations are performed on each request:

o) (2a) Integrity of credential: checks the received token sent in the

header using the internal database in memory containing all active
credentials in the system

o (2b) Authorization to carry out the request: validate that the
requested action can be done according to the permission database

J the validity of the request parameters: mainly structure and
typology

J After that stores the data in Redis (in memory) and depending on
the type of data:

o (3a) publish the data through publish mechanism

o (Bb) or register of the subscription in the
ListenerMessageContainer

J Redis is responsible for sending the published information to

ListenerMessageContainer event, who is responsible for managing the
subscription in Redis as a client for any type of event

. The container notifies the event to each subscription associated
with it [8]

785

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

The Credentials & Permissions database is updated periodically and
refreshed also in memory where is used for processing.

Sentilo provides two agents:

. Relational database agent — used to export historical data to a
relational database

. Alert agent — used for processing each data received by the
platform and validate it with the business rules configured in the catalog
[8]

Security-wise, each request must have an authentication token. If this
authentication token is not present or is incorrect, the request is dumped
and not processed. The permissions, credentials and authentication
tokens are managed through the web application by the Catalog module.
The authentication tokens are unique per application and provider, so
even though all data is stored in one place, a client can have access only
to its own data. To secure the push messages that the platform sends,
Sentilo uses HMAC, specifically the SHA-512 hash algorithm. The
messages are sent and received using REST API and in JSON format.

We conducted a set of tests on Sentilo platform. The test environment
was set up on Windows 7 and Windows 8 servers and virtual machines.
We configured and started:

o MongoDB

. Redis

. Sentilo Pub-Sub server

J Sentilo Web App Catalog
J Sentilo Agent Alert Server

We added the sensors through direct calls to the RESTFul API:

curl —request POST --header "IDENTITY_KEY: identity_key” --data
"{"sensors”:[{"sensor”:"RE0025", "description”: "sensor 25 of
moisture”, “type”:"humidity”, "dataType”: "number”, "unit”:" %",
“component”:"METEO-1",

“componentType”:"meteo”,"componentDesc”:" Test componente”,
“location”:"41.39479 2.148768","timeZone”:"CET" }]}* --header "Content-

type: application/json” http://sentilo:8081/catalog/test App_provider

In order to simulate a sensors network we wrote a Python script which
publishes data to the platform on behalf of the registered sensor above:

import requests

786

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

import random
import time

url = "http://localhost:8081/data/test App_provider/RE0025’
headers = {'IDENTITY_KEY': "identity_key'}

while True:

data = '{"observations”:[{"value”:"" + str(random.randint(1,200)) +
Y

r = requests.put(url, headers=headers, data=data)

time.sleep(3)

We also added a subscriber which was listening for the nodes
observations. The subscriber was written using Node.js:

my_http = require("http”);
url = require("url”);
var querystring = require(’querystring’);

function processPost(request, response, callback) {

var queryData="";
if(typeof callback == "function’) return null;

if(request.method == "POST’) {
request.on(’data’, function(data) {
queryData += data;
iftqueryData.length > 1e6) {
queryData="";
response.writeHead(413, {'Content-Type': "text/plain’}).end();
request.connection.destroy();

}
»;

request.on(‘end’, function() {
request.post = querystring.parse(queryData);
callback();

1);

787

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

}else {
response.writeHead(405, {' Content-Type': "text/plain’});
response.end();
/
/
my_http.createServer(function(request,response){
if(request.method == "POST’) {
processPost(request, response, function() {
console.log(request.post);
response.writeHead(200, "OK”, {'Content-Type’: "text/plain’});
response.end();
1;
Velse {
response.writeHead(200, "OK”, {'Content-Type': "text/plain’});
response.end();
}
}).listen(88);
console.log(”Server Running on 88");

The alarm was set to be triggered if the observations received from the
sensor were bigger than 45. We subscribed both to observations and
alarms:

curl --request PUT --header "IDENTITY_KEY: identity_key” --data
"{"endpoint”:"http://subscriber:88"}

http://senstilo:8081/subscribe/datal/test App_provider

curl --request PUT -header "IDENTITY_KEY: identity_key” --data
"{"endpoint”:"http://subscriber:88"}
http://sentilo:8081/subscribe/alarm/alarm_re0025

Data was transmitted over a normal public network. No VPNs were set
up or any kind of tunneling between the sensors and the platform.

We focused mainly on the integrity of the messages sent from the sensors
to Sentilo platform. In order to test if the data can be tampered with or
modified we tried the following types of attack:

J Sniffing

o Man in the Middle attack
J Bad Data Injection attack
J Replay attack

788

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Sensors send their observations in clear text. Any other value than
integer is not recognized as valid by the platform. So encrypting the data
is not possible. Also being a REST call, we had access to the headers of
the message and we were able to find out the authentication token of the
application/provider. This is also sent in clear text.

We successfully captured, replicated and modified the observations from
the sensors. In this manner we were able to raise alarms that were not
real. Neither the Alert agent nor the Pub/Sub Server noticed that the data
was altered.

3.2 Mirantis OpenStack

OpenStack is a cloud computing platform which was started by NASA
and Rackspace. Now it is managed by the OpenStack Foundation, a non-
profit organization. It is an open source project for providing cloud
computing mainly for public and private clouds. Being open source
means that a community of developers worldwide is contributing to the
development and enhancement of the platform every day.

OpenStack consist of a series of modules making it flexible and scalable.
Any user can add its own particular module if needed or modify the
existing ones. These modules and their functionality are described below:

®®®| pASHBOARD : IDENTITY
selti = SERVICE
B (Horizon) :
COMPUTE | BLOCK STORAGE NETWORKING IMAGE SERVICE ~ OBJECT STORAGE
& o. X (2) B
- Bl - b
20001, iod i i ety —]
B =i 5 = C—
(Nova) —_— (Cinder) —_— (Neutron) — (Glance) —_— (Swift) — (Keystone)

Figure 7 OpenStack architecture [9]

Nova — Compute module

This module provides services to support the management of virtual
machine instances at scale, instances that host multi-tiered applications,
dev/test environments, "Big Data" crunching Hadoop clusters, and/or
high performance computing [9].

Security-wise the instances should be isolated and protected as well as
the public endpoints and the communication between the components.

789

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Cinder — Block Storage module

The Block Storage module is responsible of providing storage for the
blocks of the compute instances. It is mainly important for tasks which
depend on the speed of accessing data.

Encrypting the data both on storage and during communication, as well
as providing strong authentication and authorization techniques should
protect the confidentiality and integrity of the blocks and data.

Neutron — Networking module

Neutron provides various networking services such as IP address
management, DNS, DHCP, load balancing, and security groups (network
access rules, like firewall policies). It provides a framework for software
defined networking (SDN) that allows for pluggable integration with
various networking solutions [9].

From a security point of view this module includes techniques for
protecting the confidentiality, integrity and availability.

Glance — Image Service module

This module’s task is to manage (discover, register, deliver) the virtual
machines images needed by the Compute module. The security issues
are the same as for Nova.

Swift — Object Storage module

Swift is the module which stores the objects and files in the cloud. It has
a native API but also an Amazon Web Services S3 specific APL Data is
not stored only in one copy, but it’s replicated in order to provide
resilience.

Security-wise the Object Storage module has the same issues and tasks as
the Block Storage module.

Keystone — Identity Service module

Keystone is a shared service that provides authentication and
authorization services throughout the entire cloud infrastructure. The
Identity service has pluggable support for multiple forms of
authentication [9].

Security concerns here pertain to trust in authentication, management of
authorization tokens, and secure communication [9].

Horizon — Dashboard

OpenStack comes with a web application for cloud administrators and
tenants. From this application the cloud resources (computing instances,
storage, security rules, images etc.) can be managed according to the role
and authorization of the logged in user.

790

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Security-wise OpenStack suggests three architectures to make the
infrastructure safe and proof against attacks and intrusions:

) SSL/TLS proxy in front — in this configuration the SSL/TLS proxy
is placed in front of the OpenStack environment. Communication is
encrypted only until the OpenStack API endpoints, afterwards clear
communication is used.

. SSL/TLS on same physical hosts as API endpoints - this
architecture is similar with the previous model, the difference being that
the SSL/TLS proxy is hosted on the same machine as the OpenStack API
endpoints. The endpoints will be configured to listen only to local
network interface, while remote calls will go through the SSL/TLS proxy.

. SSL/TLS over load balancer — this architecture is mainly useful for
high availability or load balanced environments which need to inspect
traffic. This can be achieved using the HAProxy which is able to pass the
HTTPS traffic straight to the API endpoints.

. Cryptographic separation of external and internal environments —
this architecture suits the cases where on the public network certificates
are issued by a certain CA, but internally one might want to use their PKI
to issue certificates for SSL/TLS. Subsequently, cryptographic separation
can be accomplished by terminating SSL at the network boundary, then
re-encrypting using the internally issued certificates. The traffic will be
unencrypted for a brief period on the public facing SSL/TLS proxy, but it
will never be transmitted over the network in the clear. [9]

791

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Proxy System Service System

a). 88L/TLS proxy in front

Service System

b). 85L/TLS on same physical hosts as API endpoints

Load Balancer System

c). 88L/TLS over load balancer

Service System

Service S,s T

Load Balancer System
n

=
FINTES . . . HITE

d). Cryptogzraphic separation of external and internal environments

Figure 8 OpenStack secure architectures models [9]

Additional security measures that can be implemented on the network
service, Neutron, include:
. VLANSs with IEEE 802.1Q headers

. L2 tunneling

. Access Control Lists

o L3 routing and Network Address Translation (NAT)
o Quality of Service (QoS)

o Load balancing

° Firewalls [9]

We have chosen to install Mirantis, the most flexible and easy to use
deployment of OpenStack. We have it running using VirtualBox on a
Windows 7 host with this architecture:

. 1 master node

J 3 slave nodes

Afterwards, using the Fuel web interface we’ve configured Mirantis
OpenStack environment and deployed it on the four VMs:

792

BDD-A23338 © 2015 Editura Universititii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

. Running Juno on Ubuntu 14.04.1

. QEMU hypervisor

. Neutron with VLAN segmentation

. Default security group

Using the Horizon Dashboard application we configured the images and
instances for Nova service, as well as specific keypairs for security
purposes. This keypairs are saved in .pem files and registered in the
Nova database. All subsequent calls to the Nova instances will need to
contain this keypair in order to be declared secure and processed. The
key is encrypted using RSA:

MIIEowIBAAKCAQEAy4xhtburmDEz]rJykg2bVaMISF HN+Mtf9rym7N5/rN
50MkCh
V+kXx3h4LgUsMJNDtvNgCyvd9GItGGpOme4vsFhUvryjBHGy/RsRBDbaktk
2fxU2
uYI05Y7SzTrE9Np2yrZW35/LWVtVHsm7Mrjwoo3UUN2IWU+GhQd6rIAi
UeQ1yr/f
SEBzUK1b20mLsBy2Zf53dAOUg91qC6SBMoAQDMT8HUu3AEoLtnoPQZ
OcsDfEDG2a
yquUGKpO8HWHGRCpdW5]Y cugAZwHuvzxphKzoOaMfh4Yh60sFn0986RHI
KLwTzulM
gLvahc4CQOelLteiSmQEEbg02wi0aMVMWKScZ2QIDAQABAoIBADyp3gUX
pZB60VBz
Joo42+6t5GAbQVPA6RzUJLu7pDmVF6 EKequFQLOGPmsYx47CIQ/VgO5Ta]
cLRKRe
NdoajsPzz235MmyEpl+gzXWAE6xo0aEF/xQuMrs8rvc/ EkCaZZYYMyd9;9Gr
xOXEv
lkcLr1R8ueZP3+8eMG09SWZX2eKIpMdDSWgS AF/Rgr0OikryBmAIffBhqujxt
+iSy
DS3hd2MFRnNNjG5FsH97v1mgbON9nuflJVhebx8Lq9PP1QfAbVNDzDnOv
yWBP3]P
Wyv4dRg7WFBK3WWFsxGDzmNua7LWFasvS0KegczZx7F6ttuyf3MWQPVX
0Qu/RnNTN
F4ZQHXECgYEAS8d12raKVt7fSO1nDyPD/skwP+swb2Hc31TA3d8pfcwkVry
ubUi4X
OSP/MHiUrgpSn9Im+HMkCOtmVRFb/UnjjQus]R7qVnAk]9EtuzE2F6qr2]Sg]
ZBz7

793

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

EX+fdSCRWs8+41Xbzf1ZMju71V1yvFuBtSx THhx8PqGALVUomdGozgcCgY
EA13Gp
poPOIlj7QgNKKIEGL/y1lisZ8Rv30pke8fb4gBSCrCOL1BiQCSp05Z4xyliHZ/t
oL
VEScsPYsH7v2iXHMWB4A+5phQU6ZCUmQGRvYYEnj1Krv3pAASy6hK3
8N+bCzCAoc
tTa4pwurETIpoHqpAl3htjbpnHovVV4AN6KnO4R8CgYBU2Emfk59NuXBIXa7
uulwa
MdACRPDSwdPHjGWz72sQtCIlzQzE1KQNzos] X+nO4bN4fQh4PHeURCTw?2
r0ZDzj3C5
uHKCI9RMyj4Esb6HIjZFixuJeGnNgo UGx28F GROx2PKlko]Xg5vT5SDcWHB
f5t2¢C
9C+cKoXzOq]2mp8JhqDelQKBgHKpy+ETxZ+xTsdBRwAg4q9GtOC6j9QDTI
GhrRaam
yePwoxa7tCzQfWedxhSWayg/ X AaHhgAThFGgs1EweMYuCtPb]CrEv35CIrC
atlam
uOKEEP3e/Es32P AqoRzF Qmrh4Gem+qB3v08opgNEKzN+FPVtgfO4xhzC2V5
V8JEj
2zeBA0GBAJRAXxUpTzQLV83kVG1X8neChyeWnGwlbngCjs1APImsE7tTfp
9yUvow
KTNrrN5QhVIFVolyqnKxsg6 ZfxUsdrHeMEJLM7hnlrG7cntlz/eZa4iAglY Y5t
RW
fxB+oBuDH7f1YrQS+Qs]JWPSwmMwHeN4rgB3LLrHeKKk7 VI+rU6Mf

Not storing the keypairs in clear text and making them required for each
call ensures that the Nova service is receiving and processing only
trustworthy requests. Also these keypairs can be configured to be edited
only by the user that created them.

4. Discussions

From the studied articles and researches we can see there is an increasing
interest in creating and developing platforms that integrate cyber-
physical systems like sensor networks or Smart Grids with Cloud
Computing. The main areas in which these systems can be used are:

. Agriculture
o Military
. Transportation

794

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

. Health Care

o Smart cities

The advantages that Cloud is bringing in such systems are the storage
capacity and computational power. Data can be stored for real-time
processing or historical purposes. Most of the studied platforms have the
purpose of helping users to see their data in a more organized manner
but most importantly help them make informed decisions in a short
period of time.

Usually, the data that is being generated, sent through the
communication channels and stored must have the following properties:

. Freshness

o Integrity

. Availability

. Non-repudiation
o Privacy

Security-wise, only a few of the studied frameworks implemented
solutions to keep the data and system secured. From these solutions the
most used ones are:

o Encryption
o Digital signatures
o Authentication and authorization systems for the users

. Third Party Auditors

From the two studied open source platforms, Sentilo is specifically
targeted for sensor networks integration. Mirantis OpenStack is a more
generic platform, which can be used for other types of applications as
well. The characteristics of the two platforms are presented in the
following table:

Characteristics Sentilo Mirantis OpenStack
Type Open source Open source
Target Integrated cloud | Cloud system with
system for sensor | general purpose
networks (cyber-physical
systems, running time
consuming tasks,
cloud applications)
Architecture Modular Modular
795

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

Encryption HMAC, SHA-512 | RSA (encrypted
(only for callback | keypairs), data can
messages) also be encrypted

Certificates Not specifically | Yes
mentioned

SSL/TLS Not specifically | Yes, also proposes
mentioned different architectures

to implement it

Table 1 Characteristics of Sentilo and Mirantis OpenStack platforms

Mirantis OpenStack is more security oriented than Sentilo, mostly
because it has a wider range of applications. Both platforms have a
modular architecture, each module having precise tasks to process.
Having this kind of architecture both Sentilo and MirantisOpenStack
support additional modules so a user/developer which is not satisfied of
the functionality can add its own custom module or change the
implementation of the existing ones.

Sentilo is used in real deployments in cities in Spain, most important
being Barcelona. Mirantis OpenStack deployments are also used world-
wide. Both platforms have proved to be reliable in real environments.

5. Conclusions

Cyber-physical systems have already been integrated with Cloud
platforms. There have been researches and implementations of such
frameworks in laboratories, test beds and in real life environments.
Cloud is the most appropriate solution for storing the huge amount of
data that the sensor networks, grids or other cyber-physical systems
generate. Also, because of their computational power Clouds can process
this information quickly and they offer high availability and resilience.
We have presented the current state of the research in cyber-physical
Cloud integrated systems. From a security point of view most of the
frameworks have chosen simple solutions or didn’t implement any
solution at all.

We also studied two open source platforms which can be used for
developing Cloud integrated cyber-physical systems: Sentilo and
Mirantis OpenStack. These have a stable and mature architecture which
is suitable for supporting such systems. Security-wise OpenStack has
more features than Sentilo.

796

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

In the future we intend to add our customs security modules to these
platforms to enhance the integrity of the data flow through the system
and also test in depth their performance.

References

[1] Sajjad Hussain Shah, Asad Igbal, Fazle Kabeer Khan, Wajid Ali,
“A New Framework to Integrate Wireless Sensor Networks with Cloud
Computing”, Aerospace Conference, p. 1-6, 2013.

[2] Wen-Yaw Chung, Pei-Shan Yu, Chao-Jen Huang, “Cloud Computing
System Based on Wireless Sensor Network”, Proceedings of the 2013
Federated Conference on Computer Science and Information Systems,
pp- 877-880, 2013.

[3] Dinesha H. A., R. Monica, V.K. Agrawal, “Formal Modeling for
Multi-Level Authentication in Sensor-Cloud Integration System”,
International Journal of Applied Information Systems, Volume 2— No.3,
New York, USA, May 2012.

[4] Rajeev Piyare, Sun Park, Se Yeong Maeng, Sang Hyeok Park, Seung
Chan Oh, Sang Gil Choi, Ho Su Choi, Seong Ro Lee, “Integrating
Wireless Sensor Network into Cloud Services for Real-time Data
Collection”, International Conference on ICT Convergence (ICTC), pp.
752 - 756, 2013.

[5] Ahmed Lounis, Abdelkrim Hadjidj, Abdelmadjid Bouabdallah,
Yacine Challal, “Secure and Scalable Cloud-based Architecture for e-
Health Wireless Sensor Networks”, International Conference on
Computer Communication Networks (ICCCN), Munich, Germany, Jul
2012.

[6] Satyakshma Rawat, Richa Chowdhary, Dr. Abhay Bansal, “Data
Integrity of Cloud Data Storages (CDSs) in Cloud”, International Journal
of Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 3, March 2013.

[7] Malcom Bain, “Sentilo - Sensor and Actuator Platform for smart
Cities”, JoinUp European Commission, May 2014.
(https://joinup.ec.europa.eu/community/eupl/document/sentilo-sensor-
and-actuator-platform-smart-cities)

[8] Sentilo project page - http://www .sentilo.io

[9] OpenStack documentation - http://docs.openstack.org

797

BDD-A23338 © 2015 Editura Universitaitii ,,Petru Maior”
Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 09:25:22 UTC)

http://www.tcpdf.org

