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Abstract: In this article we study a convection-diffusion problem in the one 

dimensional case from the point of view of the effect of an iterative numerical method on the 

components of the error. We propose here a new definition for the smoothing factor, and a 

new way to split the frequency spectrum used to describe the error term in the local Fourier 

analysis of the multigrid method. 
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Introduction 

For the study of iterative numerical methods, one of the most efficient and frequently 

used methods is the local Fourier analysis (LFA). This method is used in order to compute the 

amplification factor, the smoothing factor, the error reduction factor and the convergence 

factor for a numerical method. The computing of the smoothing factor is very important 

because it's analysis allows designing efficient components for the multigrid method, being 

well known that this method has to be adapted to each type of problem that has to be solved. 

The LFA, first introduced by A. Brandt in [3], then used in [1], [2] has become a widely used 

method [4], [11], [12] on a large variety of problems.  

The novelty in this paper is the definition that we propose for the smoothing factor- used for 

both the design and analysis of the multigrid method, and the new way to split the frequency 

spectrum into high and low frequencies for the one dimensional case. 

The model problem used here is the mathematical representation of the stationary 

convection-diffusion process: 
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where  is the concentration of the substance,  is a possible perturbation term for the 

concentration, due for example to chemical reactions,   is the diffusion coefficient and - the 

convection coefficient. 

In order to numerically solve a differential equation, it is discretized, using for 

example the finite differences method of second order. This process leads to the following 

system:  
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As the exact solution u  of the differential equation is also a solution of the system (2), 

the error e u v   will satisfy the system:
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If the system (3) is solved using: 

 the Gauss-Seidel method, then the iterate after m steps can be computed from the 

relation: 
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 the Pondered Jacobi method, the iterate at the step m is obtained from the relations: 
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and 
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where (0,1), 1, 1,..., 1lm j n     and 
( )m

je  is the error value after iterations in the point 

lj njx ,...,0,   . 

As the error is a vector with ln  components, the value of it in a point 
jx  can be 

expanded in a discrete Fourier series [9], for example using the base:
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From the system (5), for the Gauss-Seidel method the relation between two successive 

iterations can be written as: 

   1( 1) ( 1)( )

0 0 0

(2 ) 4 (2 ) .
l l l

k k k

n n n
m mi j t ijt i j tm

l k k l k

k k k

ah c e c e ah c e  
 

  

        

From this relation it follows that: 
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As the vectors kijt
e  are orthonormal: 

 2 21

,

0

1,1
,

0,

k kN i m i n
N N

m n

k

m n
e e

m nN

 







 


  (9)  

the equality (8) is true for any 0,..., lj n  if: 

         . ,...,0    ,0224 1

l

it

l

m

k

it

l

m

k nkeahceahc kk     (10)  

   

The amplification factor and the smoothing factor of a numerical method 
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In order to measure the growth or the decrease of a Fourier mode during one iterative 

step and the convergence speed of a numerical method, one can use the amplification factor as 

defined in [5],  [12]: 

 

Definition 1.  For a numerical iterative method, the amplification factor ( )kg t  is the ratio 

between the coefficient 
 m

kc  after m  iterates and the coefficient from the previous iterative 

step, 
 1

.
m

kc


  

The convergence speed of a numerical method is better when the module of the 

amplification factor smaller than 1.  

The amplification factor of the Gauss-Seidel method can be obtained from (10): 
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with the module: 
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so that: 

{| ( ) |, 0,..., } | (0) | 1k lmax g t k n g    

and has the graphic showed in (Figure 1c).  

 

                     
              (a) Jacobi method                       (b) pondered Jacobi method 

(ω=0.5) 

 
(c) Gauss-Seidel method 

Figure 1: The module of the amplification factor for 6, 0.1l    and 10a   in the 1-

dimensional case 
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For the pondered Jacobi method (Figure1b): 
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When the boundary conditions are periodic, “the solution of the equation (2) is only 

determined up to a constant, so the Fourier mode with  does not have to decrease during 

an iteration” [12], so that the measure used for convergence is: 

{| ( ) |, 1,..., }.k lmax g t k n  

 

Remark 1.  In Figures 1b and 1c it can be seen that for the frequencies 

, , (0,1)
2 2
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k c N c c
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 

 the amplification factor has the module 
1

| ( ) |
2

kg t  . This means 

that for the error components that have these frequencies, the numerical iterative method is 

efficient: in the worst case they are reduced by a factor of at least 
1

2
 on each iteration step. 

On the other hand, for the components having frequencies between 0, ,
2 2

N N
c N c N

   
    

   
, 

the amplification factor is almost 1, thus for these frequencies the method is not efficent: these 

components remain almost unchanged after one iterative step. 

 

A well known property of a numerical iterative method used to solve a linear system is 

the fact that it reduces efficiently the components that are oscillatory. One way to measure 

this smoothing property is to determine the smoothing factor. 

 

Definition 2 [11]. The smoothing factor of a numerical iterative method having the iteration 

matrix M  is the worst amplification factor module, taken for all the high frequencies and is 

denoted by ( ) max{| ( ) |, }.k k highM g t t T    

 
Table 1. The smoothing factor of Jacobi (J), Jacobi pondered ( ) and Gauss-Seidel (GS) 

methods for problem (2), 1,0  a  

 

The data from Table 1 show that the convergence speed of the studied methods 

decreases as the grid step becomes smaller due to the poor reduction of the low frequencies. 

Thus, these numerical methods are slowly convergent. 
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One of the most efficient methods to overcome this disadvantage of a classical 

iterative method is the multigrid method, which combines the property of such a method to 

reduce the high frequencies with the coarse grid correction method that has complementary 

properties: it reduces well the low frequencies.  

 

The low and high frequencies spectrum 

In order to design the multigrid method and for the study of its convergence and error 

reduction properties it is necessary to split the frequency spectrum into high and low 

frequencies. The splitting is made according to the effect of the smoothing method on the 

error components: the low frequencies are reduced very little or not at all by the numerical 

method, while the high frequencies are efficiently reduced, this being the fundamental 

property of a classical numerical method. 

 

W. Hackbush showed in [5] that for problem (2) with 0a   and 1 , the smoothing 

factor of the pondered Jacobi method is: 
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For the pondered Jacobi method, the relation between two successive error iterates is: 
( ) ( 1) 1 ( 1) ,m m m

l le e D L e     where lD  is the diagonal part of the matrix. If each term of the 
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then the amplification factor is: 
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Analysing the values obtained for the convergence rate, W. Hackbush defined the high 
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For the same problem, using the LFA method as in [12], the smoothing factor for the 

pondered Jacobi method ((14) with 1,0  a ) is:  
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2
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For the smoothing factor obtained with the local Fourier analysis method ((14) or 

(16)), although very close to the convergence rate form (15), the definition of low and high 

frequencies cannot be done like in [5] because the graphic of the amplification factor 

(Figure1b) is symmetric with respect to the 
2

N
k   vertical line. For this reason and taking 

into account the Remark 1, when using the local Fourier analysis of a numerical iterative 

method or the multigrid method we propose the following definition of the smoothing factor: 

 

Definition 3. The smoothing factor of an iterative numerical method that has the iteration 

matrix  is:  

 ( ) max | ( ) |, ,{ }k k k highM g t t T    (17)  
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Another reason we changed the definition (2) into (3) is the fact that in (7) the 

coefficients corresponding to different frequencies are complex numbers. And so the ratio of 

two succesive iterations of the same component can be made only in module. But when the 

expansion has all the terms in  the coefficients of each component will represent the 

amplitude of that oscillatory mode. In the remaining part of this section, we will determine the 

expression in the real number set of the Fourier expansion for the error. 

The discrete Fourier expansion in a point s lx sh  was (7): 
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Remark 3. For 11 2l

lN n     and 
2

N
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Using the above remarks, the relation (18) becomes: 
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The coefficients  can be computed using the reverse Fourier transform:  
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From this equalty, using the remark that the values sE  are real numbers, it follows that: 

 Property 1. The coefficients in the Fourier expansion for a real valued function have the 
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ii. Replacing in (20) 0;s   

iii. Using the Property 1a: 
2 2 2
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The relation (19) and Property 1a lead to the following expression of the error in a point: 
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that has every term in . In this form, in the error expression are involved only half of the 

components used for the complex Fourier expansion. 

If in (22) we write the complex coefficients as k k kc a ib  , the component of k  order 
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Thus:

 

 

 

(23)  

 

only contains the frequencies: 0,1,..., 1
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 and as the components are now real 

numbers, two successive iterative steps can be easily compared. Moreover, the coefficients 

2222 kkk baA    now represent the amplitude of the sinusoids composing the error. 

 

From the complex expression of the amplification factor obtained for 1k   ( [12]): 
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Using the Definition 3, the smoothing factor of the Gauss-Seidel method for problem 

(2) is: 
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and for the pondered Jacobi method:  
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Conclusions 

 

In the following we present the results we obtained for the smoothing factor using the 

Definition 3 for the Gauss-Seidel and pondered Jacobi methods. The data in Tables 2, 3 and 

4, presented below, lead to the following conclusions: 
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 The Jacobi method is not efficient as a smoother in the multigrid method due to the 

fact that it does not have the usual property of a numerical iterative method to 

efficiently reduce the high frequency error components, but it reduces only the middle 

part of the frequency spectrum  

( (0, / 2 1)k N  ). And the multigrid method is based on the reduction of the high 

frequencies by the smoothing method. Moreover, the coarse grid correction, 

complementary to the smoothing method, is only efficient in reducing the low 

frequencies, because only these components (being smooth) can be well approximated 

on a coarse grid and in this case it should also reduce the frequencies from 
4

N
k   to 

1
2

N
k    although these belong to 

highT . 

 

 On the other hand, for the Gauss-Seidel or pondered Jacobi method, the property of 

reducing the high frequencies determined using Definition 3 is even better than was 

computed untill now using Definition 2 for each iterative step and applying these 

methods more times makes them even more efficient. 

 For the case of dominant convection (Table 4) as the number of layers used is 

growing, the amplification factor becomes smaller, thus it is better to use the 

numerical iterative method on a grid having more levels (at least six for the problem 

studied here) in order to have a reduction of the low frequencies components of the 

error, and even so the reduction is not efficient. This is why, as it is well known, for 

the convection-diffusion equation, when convection is dominant, the numerical 

iterative methods are often inefficient and special techniques have to be designed (for 

example stream-line diffusion [6], [7] or hp-multigrid methods [8], [10]) in order to 

overcome this inconvience. 

 

 
Table 2: The smoothing factor of Gauss-Seidel (GS), Jacobi (J) and pondered Jacobi ( ) 

methods for model problem (2), 0, 1a    -pure diffusion 
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Table 3: The smoothing factor of Gauss-Seidel (GS) , Jacobi (J) and pondered Jacobi ( ) 

methods  for model problem (2) and 1, 1a    

 

 
Table 4: The smoothing factor of Gauss-Seidel (GS) , Jacobi (J) and pondered Jacobi ( ) 

methods for model problem (2) and 10, 0.1a    -dominant convection 
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