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Abstract: Neural computation, based on neural networks, solve problems by learning, 

they absorb experience, and modify their internal structure in order to accomplish a given 

task. In the learning process of the neural networks the available information is usually 

divided into two categories, examples of function values or training data and prior 

information, e.g. smoothness constraint, or other particular properties. The main feature of 

the neural computing is the learning capability. Learning from examples means being able to 

infer the functional dependence between input and output spaces X and Z, given the 

knowledge of the set of examples T. It means that, after we have “learned” N examples, when 

a new input variable x is presented, we need to be able to estimate, according to some 

criterion that we will specify, a corresponding value of z. From this point of view learning is 

equivalent to a function approximation.  
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Introduction  

In several papers [5], [6] we have analyzed the learning capabilities of neural 

networks, arguing that the task of learning from examples can be considered in many cases to 

be equivalent to multivariate function approximation, that is, to the problem of approximating 

a smooth function from sparse data, called training set.  

Our approach is based on the recognition that the ill-posed problem of function 

approximation from sparse data must be constrained by assuming an appropriate prior on the 

class of approximating functions.  

In this context, we have to be more precise in establishing the meaning of “ill-posed 

problem of function approximation from sparse data”. We will use the definition given in 

[20]: 

Definition 1: The problem of approximating a function f: X  Y is well-posed if the 

following conditions are satisfied: 

(C1) Existence: For any x  X, there exists y  Y with  xfy  ; 

(C2) Uniqueness: For any x, y  X,    yfxf   if and only if x = y; 

(C3) Continuity: function f is continuos. 

Definition 2: The problem of approximating a function f: X  Y is ill-posed if the one 

of the conditions (C1), (C2), (C3) is not satisfied. 

From this point of view, the learning process of a neural network, or the 

approximation of a smooth function using a set of examples is ill-posed. Usually the training 

set doesn’t contain enough information; therefore the condition of uniqueness (C2) is not 

satisfied. In many cases, the training set contains noisy data that implies that the condition of 

continuity (C3) set is not satisfied. 
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In order to transform the ill-posed problem of approximating a function from sparse 

examples into a well-posed problem, we need to take into consideration some a priori 

hypothesis about the function to be approximated. What is the weakest a priori hypothesis that 

can be considered without affecting the general frame of function approximation? The 

learning process (function approximation) is efficient if we obtain good generalization 

properties. But the generalization properties are a result of a certain level of redundancy, more 

precisely we can say that generalization properties are a result of the property that small 

changes of the input parameters results in small changes of the output parameters. This 

property is usually called smoothness. 

Concluding, we can say that the learning process of a neural network is equivalent to 

the approximation of a smooth function from examples (the training set) [12]. 

 

Neural networks as a solution of regularization techniques 

Regularization techniques typically impose smoothness constraints on the 

approximating set of functions. It can be argued that some form of smoothness is necessary to 

allow meaningful generalization in approximation type problems. A similar argument can also 

be used in the case of classification where smoothness involves the classification boundaries 

rather than the input-output mapping itself.  

Our use of regularization, which follows the classical technique, introduced by 

Tikhonov [20] [21], identifies the approximating function as the minimizer of a cost 

functional that includes an error term  
2

2

1
 

i

ii yz and a smoothness functional  f
2

1
, 

usually called stabilizer.  

In the Bayesian interpretation [8] of regularization the stabilizer corresponds to a 

smoothness prior, and the error term to a model of the noise in the data (usually Gaussian and 

additive).  

Suppose that the training set   NizxT ii ,,2,1,   has been obtained by random 

sampling of a function f, belonging to some space of functions X defined on R
n
, in the 

presence of noise, and suppose we are interested in recovering the function f, or an estimate of 

it, from the set of data contained in T. This problem is clearly ill-posed, since it has an infinite 

number of solutions. In order to choose one particular solution we need to have some a priori 

knowledge of the function that has to be reconstructed. The most common form of a priori 

knowledge consists in assuming that the function is smooth, in the sense that two similar 

inputs correspond to two similar outputs.  

The main idea underlying regularization theory is that the solution of an ill-posed 

problem can be obtained from a variational principle, which contains both the data and prior 

smoothness information. Smoothness is taken into account by defining smoothness in such a 

way that lower values of the functional correspond to smoother functions.  

Since we look for a function that is simultaneously close to the data and also smooth, 

it is natural to choose as a solution of the approximation problem the function that minimizes 

the following functional [18]:  

          
i

ii fzyfH 
2

1

2

1 2
   (1) 
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where  is a positive number that is usually called the regularization parameter. The first term 

is enforcing closeness to the data, and the second smoothness, while the regularization 

parameter controls the trade off between these two terms. It can be shown that, for a wide 

class of functionals (1), the solutions of the minimization of the functional (1) all have the 

same form [13].  

We first need to give a more precise definition of what we mean by smoothness and 

define a class of suitable smoothness functional. We refer to smoothness as a measure of the 

oscillatory behavior of a function. Therefore, within a class of differentiable functions, one 

function will be said to be smoother than another one if it oscillates less. If we look at the 

functions in the frequency domain, we may say that a function is smoother than another one if 

it has less energy at high frequency (smaller bandwidth) [11].  

The function that minimizes the functional (1) has the following form [18]:   

         xx;xx pGwf
i

ii      (2) 

where p(x) is a term belonging to the null space of the regularization term  f
2

1
. 

 We make the following notation:    1

k
 is a base of the k-dimensional null space of 

the regularization term  f
2

1
, and d real constants, we have the following general solution: 

         



kN

i

ii dGwf
11

xx;xx


    (3) 

 In practical application we can consider classes of stabilizers with void null space. 

Therefore, without reducing the generality of the solution of the minimization of functional 

(1), we can consider the following practical solution: 

       
i

iiGwf x;xx      (4) 

The solution (4) of the variational problem (1) has a simple interpretation in terms of a 

neural network with one layer of hidden units, of Multylayer Perceptron type [10], 

represented in Figure 1. Let’s analyze the architecture of the neural network that corresponds 

to the solution function (4): 

1. The architecture of the neural network corresponds to a neural network of the Multylayer 

Perceptron type with one hidden layer: 

 The input layer contains n input neurons, n representing the dimensionality of the input 

space       x i i i i

n
x x x

1 2
, , ,   R

n
.  

 The hidden layer having a number of hidden neurons equal to the dimension of the 

training set    T f i Ni i x x, ,2, ,1  . The activation functions of the hidden 

neurons are the Green functions  kG xx   [18]. The dimension of the hidden layer can 

be reduced using an unsupervised clustering algorithm [8]; 
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G(x-

x1) 

 The output layer contains one single output layer having as activation function a linear 

function or a special weighted functions of the output values generated by the neurons 

in the hidden layer [2]; 

2. Synaptic weights: 

 The weights between the input layer and the hidden layer are included in the form of 

the activation functions of the hidden neurons. These weights are not explicitly 

presented in the mathematical equation (4);  

 The vector  Nwww ,,,w 21   represents the weights between the hidden layer and 

the output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Architecture of a neural network that corresponds to the solution function (4). 

 

 

Radial Basis Functions and radial stabilizers  

In this section we want to obtain the classes of well known RBF - Radial Basis 

Function as a particular case of the general solution (3). In order to achieve this goal we have 

to make an a priori presumption about the smoothness of the function that must be 

approximated.  

Most of the commonly used stabilizers have radial symmetry [3], that is, they satisfy 

the following equation:  

      f f Rx x      (5) 

for any rotation matrix R. 

This choice reflects the a priori assumption that all the variables have the same 

relevance, and that there are no privileged directions. Rotation invariant stabilizers correspond 

clearly to radial basis function  xG  [18]. Much attention has been dedicated to this case, 

and the corresponding approximation technique is known as Radial Basis Functions [16], 

[17].  
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The class of admissible Radial Basis Functions is the class of conditionally positive 

definite functions of any order, since it has been shown [4], [15] that in this case the 

functional of equation (2) is a semi-norm, and the associated variational problem is well 

defined.   

All the Radial Basis Functions can therefore be derived in this framework [19]. We 

will consider explicitly the following example.  

 

Example 1: Gaussian 

We will consider a stabilizer of the form [7]: 

    f d e f
n

  s s

s

R

2

2
 ~

     (6) 

where  is a fixed positive parameter. We obtain as result of the variational problem the 

following function: 

 
~
G es

s




2

      (7) 

 The Gaussian function is positive definite, and it is well known from the theory of 

reproducing kernels that positive definite functions can be used to define norms of the type 

(2). Since  f  is a norm, its null space contains only the zero element, and the additional 

null space terms of equation (3) are not needed.  

 

Fig. 2.: Graphic of RBF  
2

x
x


 eG . 

 

Here we give a list of other functions that can be used as basis functions in the Radial 

Basis Functions technique, and that are therefore associated with the minimization of some 

functional.  

 

    G cx x 
2 2  - multi-quadratic function  (8) 

    G
c

x
x




1

2 2
 - multi-quadratic inverse function (9) 
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    G
n

x x x
2

ln  - spline     (10) 

    G
n

x x
2 1

 - spline      (11) 

    G e Lx
x




1  - Gaussian     (12) 

 

RBF Neural Networks Topology 

Following the previously presented results RBF is a particular type of feed-forward 

neural network of the one presented in Figure 1, with an input layer (made up of source 

nodes: sensory units), a single hidden layer and an output layer [9].  

The specific architecture of the RBF neural network is presented in Figure 3 [4]. 
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w

K
w

 

Fig. 3: RBF neural network topology. 

 

If  nxx ,...,1x  is the input vector, ()g  is the Radial Basis Function and ic  is the centre 

parameter for the function corresponding to neuron i, then the output created by the network 

will be:  

  



K

i

ii gwy
1

)(x  



K

i

ii gw
1

cx    (14)  

 

Generally, the Gaussian function (12) is used: 

 
2

2

2
)( i

i

eg i



cx

x




       (15) 

where i  is the scale parameter for the function corresponding to neuron i.  

There are some methods to select the parameters ( ic , i ) of the activation function. If 

few training points are present, then all of them could be used as centre parameter. In this case 

the number of the processor units in the hidden layer is equal with the number of training 

points. If the number of training points is high, a single neuron for a group of similar training 

Provided by Diacronia.ro for IP 216.73.216.216 (2026-01-14 07:54:33 UTC)
BDD-A23472 © 2013 Editura Universităţii „Petru Maior”



 

1161 

 

points can be considered. These groups of similar training points can be identified using 

clustering methods [6].  

 

Leaning Strategies for RBF Neural Networks 

The RBF Neural Network may be trained with a supervised learning algorithm. A 

descendent gradient-based algorithm can be considered [14]. The aim is to calculate the 

synaptic weights wi, i = 1,2,…,K of the network. 

Let   NizzT i

n

iii ,,2,1,,,  RRxx  be the set of the training samples.  A 

clustering algorithm can be is used on the points of the set T. The cluster centres ci, Ki ,...,1  

are considered (in this way the number of the neurons in the hidden layer is K).  

Parameters Ri , Ki ,...,1  can be determined corresponding to the diameter of 

clusters. This step is not executed when K is equal with N (K = N), because in this case ci = xi, 

Ni ,...,1  (every training point is a cluster centre too and the value of the width parameters is 

i = 1/N). 

If the Gaussian function is used as activation function, then at the l
th

 step the global 

learning error is  

 



N

i

iil yz
N

E
1

2)(
1

     (15) 

where  

  






K

j

c

ji
j

ji

ewy
1

2

)(

2

2



x

, Ni ,...,1    (16 

Using the gradient descendent rule, we have: 

 ,
i

i
w

E
w




  Ki ,...,1     (17) 

where   is the learning rate and E is the global learning error. 

Weights updating is based on the following correction rule:  

 iii www  , Ki ,...,1     (18) 

 

When the learning process is finished, M points, which are not from the training set T, 

are randomly generated. The corresponding generalization error is defined by the expression 

[5]: 

 



M

i

iig yz
M

E
1

2)(
1

    (19) 
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Approximation and Interpolation With RBF Neural Networks 

The interpolation problem, in its strict sense, may be stated as follows: given a set of N 

different points  Nix p

i ,...,1| R  and a corresponding set of N real 

numbers Nidi ,...,1| R , find a function RR pF :  that satisfies the interpolation 

condition [2], [6]: 

   NidxF ii ,...,1,       (20) 

The RBF technique consists of choosing a function F that has the following form [10]: 

    



N

i

ii xxgwxF
1

     (21)  

where  

   Nixxg i ,...,1|       (22) 

is a set of N arbitrary radial basis functions. The known data points Nix p

i ,...,1, R  are 

taken to be the centres of the radial basis functions. 

A RBF network is considered, with a single processor unit in the output layer, and N 

processor units in the hidden layer, where   Nixxg i ,...,1|   is the set of the activation 

functions for the hidden processor units. The interpolation problem is reduced to the 

determination of weights (learning process) [3]. 

From this point of view, the neural network represents a map from the p-dimensional 

input space to the single-dimensional output space, written as: 

 RR ps :       (23) 

The map s could be considered as a hyper-surface 1 p
R . The surface   is a 

multidimensional plot of the output as a function of the input. In a practical situation, the 

surface   is unknown and the training data are usually affected by noise. Accordingly, the 

training phase and generalization phase of the learning process may be respectively viewed as 

follows [1], [4]: 

- The training phase constitutes the optimization of a fitting procedure for the 

surface , based on known data points presented to the network in the form of input-output 

examples. 

- The generalization phase is synonymous with the interpolation between the data 

points, with the interpolation being performed along the constrained surface generated by the 

fitting procedure as the optimal approximation to the true surface . 

 

Conclusions 

The paper presents a general model of the application of neural networks in the 

domain of function approximation and interpolation, viewed as a learning process. The 

synthesis is based on two theoretical aspects, namely, the approximation properties of the 
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neural networks and the regularization theory. The results presented in the paper confirm the 

fundamental role of the theoretical models for the application of neural networks for function 

approximation and interpolation. 

We have investigated the neural networks based approximation methods. The 

approximation of a function is equivalent with the problem of learning for neural networks. In 

other words, to approximate a function is equivalent to synthesise an associative memory that 

generates the appropriate output when an input is presented at the input layer and generalises 

correctly when a new input is presented at the input layer.  Our aim was to improve the 

learning performances of neural networks, using some additional information from the 

training data set.  
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