A REMARCABLE PROPERTY OF EXCESSIVE FUNCTIONS CONE

Diana Mărginean Petrovai, Assistant Professor Phd, "Petru Maior" University of Tîrgu Mureș

Abstract: In this paper we present remarcable properties of excessive functions with respect to absolute continue resolvent. The cone of above functions forms a *H*-cone.

Keywords: excessive function, *H*-cone, absolute continue resolvent

The excessive functions with respect to absolute continue resolvent.

Definiton 1. If (X, \mathcal{B}) is a measurable space and $p\mathcal{B}$ the numerical positive measurable functions on E we denote a kernel on (X, \mathcal{B}) a map $V: p\mathcal{B} \to p\mathcal{B}$ with properties:

- 1. V0 = 0
- 2. $V(\sum_n f_n) = \sum_v V(f_n)$.

Definition 2. A family $V = (V_{\alpha})_{\alpha>0}$ of kernels on measurable space (X, β) is called resolvent if the followings hold:

- 1. $V_{\alpha}V_{\beta} = V_{\beta}V_{\alpha}, \forall \alpha, \beta > 0$
- 2. $V_{\alpha} = V_{\beta} + (\beta \alpha)V_{\alpha}V_{\beta}, \forall \alpha, \beta > 0, \alpha < \beta.$

The resolvent is called sub-Markovian if for any $\alpha > 0$ we have $\alpha V_{\alpha} \leq 1$. The kernel $V = \sup_{\alpha} V_{\alpha} f$ is called initially kernel.

Definition 3. A map $s \in p\mathcal{B}$ is called \mathcal{V} - excessive if the followings hold:

- 1. s is V –supermedian, i.e $\alpha V_{\alpha s} \le s$ for any $\alpha > 0$
- 2. $\sup_{\alpha} \alpha V_{\alpha} s = s$
- 3. s is finite V a.e. (a set $A \subseteq X$ is V-negligible if there exists $A' \subseteq B$ such that $A \subseteq A'$ and $V_{\alpha}(A') = 0$, for any $\alpha > 0$).

Proposition 1. We have the following properties:

- 1. If $s \in \mathcal{S}_{\mathcal{V}}$ it follows that $\hat{s} = \sup_{\alpha} V_{\alpha} s \in \mathcal{S}_{\mathcal{V}}$, $\hat{s} \leq s$
- 2. If $s, t \in S_v$ it follows that $\widehat{s+t} = \hat{s} + \hat{t}$
- 3. For any $(s_n)_n \subset S_{\mathcal{V}}$, $s_n \uparrow s$ it follows that $s_n \uparrow s$
- 4. For any $s \in \mathcal{S}_{\mathcal{V}}$ it follows that $V_{\alpha}\hat{s} = V_{\alpha}s$
- 5. If $s \in \mathcal{S}_{\mathcal{V}} \Rightarrow \hat{s} = s \mathcal{V}$ a.p.t.
- 6. If $s \in S_v \Rightarrow \hat{s} = s$ see (e.g [1] Proposition 1.18)

Theorem 1. We have the following properties:

1. For any $t \in \mathcal{E}_{v}$ (the set of excessive functions), $\alpha, \beta > 0$ it follows that $\alpha s + \beta t \in \mathcal{E}_{v}$

- 2. For any $s, t \in \mathcal{E}_{\mathcal{V}}$, $s \leq t \mathcal{V}$ -a. e. it follows that $s \leq t$
- 3. For any $(s_n)_n \subseteq \mathcal{E}_v$ there exists $\Lambda_n s_n$ and we have $\Lambda_n s_n = \inf s_n$ and $s + \Lambda_n s_n = \Lambda_n (s + s_n)$, for any $s \in \mathcal{E}_v$
- 4. For any $(s_n)_n \subset \mathcal{E}_{\mathcal{V}}$ dominated there exists $\bigvee_n s_n$ and we have $\bigvee_n s_n = R^{\mathcal{V}}(\sup_n s_n)$, where $R^{\mathcal{V}}f = \inf\{s \in \mathcal{S}_{\mathcal{V}} \mid s \geq f\}$ ($s \in \mathcal{S}_{\mathcal{V}}$ if and only if $\alpha \bigvee \alpha s \leq s$, for any $\alpha > 0$) (see e.g. [1] Theorem 1.1.9)

If $(s_n)_n$ is an increasing family we have $\bigvee_n s_n = \sup_n s_n$.

5. For any $s, t, u \in \mathcal{E}_{\mathcal{V}}$ such that $s \leq t + u$, there exists $s', s'' \in \mathcal{E}_{\mathcal{V}}$ such that s' + s'' and $s' \leq t, s'' \leq u$. (see e.g. [4] Theorem 1.1.9)

Definition 4. A resolvent $\mathcal{V} = (V_{\alpha})_{\alpha > 0}$ is absolutely continue (with respect to a finite measure m) if for any $f \in \mathcal{F}$, such that $\int f dm = 0$ it follows that $V_{\alpha} f = 0$, for any $\alpha > 0$).

Theorem 2. Let $\mathcal{V} = (V_{\alpha})_{\alpha > 0}$ an absolutely continue resolvent (with respect to a finite measure m). Then the followings hold:

- 1. For any increasingly and dominated family $(s_i)_{i \in I} \subset \mathcal{E}_{\mathcal{V}}$ we have $\sup_{i \in I} s_i \in \mathcal{E}_{\mathcal{V}}$ and there exists an increasing family $(s_{i_n})_{i_n \in I'}$ such that
- $\sup_{n} s_{i_n} = \sup_{i \in I} s_i = \bigvee_{i \in I} s_i.$
- 2. For any family $(s_i)_{i \in I} \in \mathcal{E}_{\mathcal{V}}$ there exists a subsequence $(i_n)_n \subset I$, such that $\bigwedge_{i \in I} s_i = \widehat{\inf} s_{i_n}$ and $s + \bigwedge_{i \in I} s_i = \bigwedge_{i \in I} (s + s_i)$, for any $s \in \mathcal{E}_{\mathcal{V}}$ (see e.g [4] Theorem 1.1.10)

Definition 4. An ordered convex cone **5** is called **H**-cone if the following axioms are satisfied:

- 1. For any non-empty family $A \subseteq S$ there exists $\bigwedge A$ and we have $s + \bigwedge A = \bigwedge (s + A)$, for any $s \in S$;
- 2. For any increasing and dominated family $A \subseteq S$ there exists VA and we have V(A = u) = VA + u, for any $u \in S$;
- 3. S satisfies the Riesz decomposition property i.e. for any $s, s_1, s_2 \in S$ such that $s \leq s_1 + s_2$ there exist $t_1, t_2 \in S$ satisfying $s = t_1 + t_2$, $t_1 \leq s_1, t_2 \leq s_2$.

From two theorem above it follows that the cone of excessive functions with respect to absolute continue resolvent forms a *H*-cone.

References

- 1. N. Boboc, Gh. Bucur, Order and Convexity in Potential Theory: H-cones, Lecture Notes in Math. 853, Springer-Verlag 1981.
- 2. M. Şabac, Lecții de analizț reală. Capitole de teoria măsurii și integralei, Editura Bucuresti, 1982.
- 3. N. Boboc, Gh. Bucur, Măsură și capacitate, Editura științifică și enciclopedică, București, 1985.

- 4. N. Boboc, Analizăa matematică, Editura Fundamentum, București, 1998.
- 5. W. Rudin, Principles of Mathematical Analysis, Mc Grow-Hill, New-York, 1964.
- 6. N. Boboc, Gh. Bucur, Potentials and supermedian function on fine open sets in standard H-cones, Preprint Series in Mathematics No. 59, 1984, București.
- 7. N. Boboc, Gh. Bucur, A. Cornea, Natural Topologies on H-Cones. Weak Completeness, Preprint Series in Mathematics No. 12, 1978, București.
- 8. N. Boboc, Gh. Bucur, A. Cornea, Carrier Theory and Negligible Sets on a Standard H-Cone of Functions, Preprint Series in Mathematics No. 25, 1978, Bucureşti.
- 9. N. Boboc, Gh. Bucur, Potentials in standard H-cones of functions, Preprint Series in Mathematics No. 6, 1988, București.
- 10. N. Boboc, Gh. Bucur, Potential in Standard H-Cones, Preprint Series in Mathematics No. 61, 1979, București.
- 11. R. Cristescu, Analiză funcțională, Editura didactică și pedagogică, București, 1979.
- 12. D. Mărginean Petrovai, New Properties of Excessive Measures, Mathematical Reports, vol 10 (60), no. 4, 2008
- 13. D. Mărginean Petrovai, Positive Measures and Outer Measures on a σ Algebra of Sets, Interdisciplinarity in Engineering Proceedings, 2012, 382-384.
- 14. D. Mărginean Petrovai, The Most Important Outer Measures, Interdisciplinarity in Engineering Proceedings, 2012, 385-387.
- 15. D. Mărginean Petrovai, Lebesgue-Stieltjes measure on \mathbb{R} , Elsevier, Procedia Tehnology, vol. 12, 2014, 234--239.