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Abstract: In this paper we present remarcable properties of excessive functions
with respect to absolute continue resolvent. The cone of above functions forms
a H-cone.
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The excessive functions with respect to absolute continue resolvent.

Definiton 1. If (X, B) is a measurable space and pEB the numerical positive
measurable functions on E we denote a kernel on (X, B) a map V: pB — pB
with properties:

1. Vo =0

2. V(Zufa) = 2.V (£).

Definition 2. A family V' = (V) .. of kernels on measurable space (X, £} is
called resolvent if the followings hold:

1. V V=1V, Va,f >0

2. W=+ @-aVV,Vaf >0a<p

The resolvent is called sub-Markovian if for any @ = 0 we have al, = 1.
The kernel VV = sup_ V,f is called initially kernel.

Definition 3. A map s € pE is called V- excessive if the followings hold:

1. s is V —supermedian, i.e al,. = s forany @ = 0
2. sup, al,s =s
3. s is finite V a.e. (a set 4 = X is V-negligible if there exists A" = B such

that A = A" and V,(A") = 0, for any @ = Q).
Proposition 1. We have the following properties:

1. If 5 € &, it follows that & = sup, V,s €85, £ = s
2. Ifs,t €&, itfollowsthat ¥+t =5§+1
3. Forany (s,), © &, 5, T sitfollows thats, T s
4. For any s € &, it follows that V5 = 1,5
5. Ifs€S,=3=sV-apt
6. If s € 8§, = & = 5 see (e.g [1] Proposition 1.18)
Theorem 1. We have the following properties:
1. For any t € &y, (the set of excessive functions), &, 5 = 0 it follows that
as + Bt € &,
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2. Forany =,t € &,,5 =t V -a.e. it follows that s = ¢

3. For any (s,), S £, there exists A\, 5,, and we have A, s, = nf =, and
5T "'“I".v! En T .-'"'-._,,!(5' b 5'_11:'; for any = = 511
4. For any (s,), &, dominated there exists Vs, and we have

W _ s, =R"(sup,s,), where RVf = inf{s £ 8, | s = f} (s € §; if and only if
aVas < s, for any @ > 0] (see e.g. [1] Theorem 1.1.9)

If (5,,),, is an increasing family we have V,, s,, = sup,, s,,.
5. For any s,t,u € &, such that § < t +u, there exists 5,5 € £, such
that s' + 5" and s’ = t, 5" = u. (see e.g. [4] Theorem 1.1.9)
Definition 4. A resolvent V = (V) .., is absolutely continue (with respect to a
finite measure m) if for any f €F, such that [ fdm =0 it follows that
V.f =0, forany a = Q).
Theorem 2. Let VV = (V] .= an absolutely continue resolvent (with respect to
a finite measure #1). Then the followings hold:
1. For any increasingly and dominated family (=);-; = &, we have
SUp;<; 5; €& and there exists an increasing family [:gfr_ } _., such that
SUp, S;, = SUPigr §; = Vigr S h
2. For any family (s,);z; € &, there exists a subsequence (i, ), = I, such
that A, ;5. = ﬁ?fsi___ and s+ M\;o; 5, = Ao (s + 5.), for any 5 € &, (see e.g [4]
Theorem 1.1.10)
Definition 4. An ordered convex cone 5 is called H-cone if the following
axioms are satisfied:

1. For any non-empty family 4 © 5 there exists AA and we have
s+ N = Als+ A, forany 5 £ §;

2. For any increasing and dominated family 4 < 5 there exists VA and we
have V(4 =u) =VA +u, for any u € 5;

3. 5 satisfies the Riesz decomposition property i.e. for any s, 5,5, €5

such that s =5, + 5, there exist f;,t; €5 satisfying 5= 1t; +t,
ty < st 55,

From two theorem above it follows that the cone of excessive functions with
respect to absolute continue resolvent forms a {-cone.
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